UBIQUITOUS EXPRESSION OF CYCLOOXYGENASE-2 IN MENINGIOMAS AND DECREASE IN CELL GROWTH FOLLOWING IN VITRO TREATMENT WITH THE INHIBITOR CELECOXIB: POTENTIAL THERAPEUTIC APPLICATION

BRIAN T. RAGEL, M.D., RANDY L. JENSEN, M.D., PH.D., DAVID L. GILLESPIE, PH.D., STEPHEN M. PRESCOTT, M.D., PH.D., AND WILLIAM T. COULDWELL, M.D., PH.D.

Department of Neurosurgery, University of Utah; and Huntsman Cancer Institute, Salt Lake City, Utah

Object. Meningiomas are the second most common symptomatic primary central nervous system tumor in adults. Findings of epidemiological studies link meningiomas with a history of head trauma, indicating a causal relationship between the inflammatory response and meningioma tumorigenesis. Cyclooxygenase-2 (COX-2), an inducible inflammatory enzyme, converts arachidonic acid to prostaglandins, which have angiogenic, cell-proliferative, and antiapoptotic effects. The authors investigated COX-2 expression in meningiomas and the effects of celecoxib, a COX-2 inhibitor, on meningioma cell growth in vitro.

Methods. Four meningioma surgical specimens were immunohistochemically stained and graded (0 to 4) for COX-2. In addition, a Western blot analysis was performed to detect the presence of COX-2. Human meningioma cells grown in cell culture were treated with vehicle or celecoxib (0.25–1 mM). An immunohistochimical analysis of COX-2, a methyl-thiotosazolone cell proliferation assay, a TUNEL apoptosis assay, and a Western blot analysis for the proapoptotic protein BAX were performed in vitro.

One hundred eleven (87%) of 128 benign meningiomas and six (86%) of seven atypical meningiomas displayed a high COX-2 immunoreactivity (Grade 4 staining). In the Western blot analysis all four surgical specimens (100%) stained positive for a 70-kD band consistent with COX-2. Celecoxib inhibited cell growth in a dose-dependent fashion and induced apoptosis by Day 2, with no change noted in the expression of the BAX protein.

Conclusions. The COX-2 enzyme is universally expressed in meningiomas. Celecoxib inhibits meningioma growth in vitro in a dose-dependent fashion, with evidence of apoptosis. Inhibitors of COX-2 may have a role in the treatment of recurrent meningiomas.

KEY WORDS • meningioma • cyclooxygenase-2 • celecoxib

MENINGIOMAS are the second most common symptomatic adult central nervous system tumor, accounting for approximately 20% of all primary intracranial tumors in adults. Meningioma progression or recurrence occurs because of the aggressive biology of the tumor or because the lesion is found in an unresectable location.4,7,18 Recurrence rates for benign meningiomas 5 years after their complete removal have been reported to be 2 to 3%, whereas recurrence rates for atypical and anaplastic meningiomas have been reported to be 38 to 50% and 33 to 78%, respectively.12,34 Treatment options for recurrent meningiomas include additional surgery, conventional external-beam radiation therapy, stereotactic radiosurgery, and systemic therapies.12,33,44,45 Unfortunately, radiation therapy is limited by radiation neurotoxicity, tumor size, and injury to adjacent vascular or cranial nerves.13 To date, chemotherapies have proved to be ineffective in controlling recurrent meningiomas and new treatments should be explored.3,20,44,45,47

Findings of several epidemiological studies have demonstrated a link between meningioma tumors and a history of head trauma; from this we may infer a causal relationship between the inflammatory response and future meningioma formation.2,35,39,42,43 Cyclooxygenase-2, an inducible inflammatory response enzyme, has been shown to be upregulated in animal head trauma models.23,24 Cyclooxygenase is the rate-limiting enzyme in the synthesis of prostaglandins from arachidonic acid.9 The prostaglandins are involved in a variety of biological activities, such as angiogenesis, increased cell proliferation, and suppression of apoptosis. The enzyme COX-2 is induced by migratory cells (for example, macrophages, monocytes, and microglia) responding to proinflammatory stimuli and is considered to be an important mediator of acute and chronic inflammatory states.31,13,31 Overexpression of COX-2 has been closely linked to the tumorigenesis of colon, lung, and breast cancers.41,51 A growing body of literature supports the use of NSAIDs and selective COX-2 inhibitors in the treatment of an increasing number of cancers. The NSAIDs exert their antiinflammatory responses by competitively inhibiting the COX-2 enzyme, blocking the synthesis of prostaglandins.35,47,48

Abbreviations used in this paper: COX = cyclooxygenase; DMSO = dimethyl sulfoxide; DPBS = Dulbecco phosphate-buffered saline; MTT = mononitotetrazolium; NSAID = nonsteroidal antiinflammatory drug; TUNEL = terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling; WHO = World Health Organization.
COX-2 universally expressed in meningiomas

flammmatory action by inhibiting the activity of the COX enzyme, which in turn results in decreased synthesis of the proinflammatory prostaglandins.11 The ability of NSAIDs to inhibit the COX enzyme is considered to be their major, but not sole, mode of function.12 Celecoxib (Celebrex; Pfizer, Inc., New York, NY) is a specific COX-2 inhibitor that acts slowly, time-dependently, and irreversibly.11

In this article, we demonstrate the ubiquitous expression of COX-2 by immunohistochemical staining and Western blot analysis and describe our initial findings on the effects of celecoxib on meningioma cells grown in vitro.

Materials and Methods

Meningioma Surgical Specimens

Meningioma surgical specimens were obtained in accordance with the University of Utah Institutional Review Board protocol and were processed for immunohistochemical, cell culture, and Western blot analyses. Specimens that were not used for cell cultures were stored at −70°C. Tumors were graded according to WHO criteria.7 For the purposes of this paper, we will use the term “benign meningioma” to describe a WHO Grade I meningioma.2 Patient data associated with paraffin-stained tissue and the in vitro studies are listed in Table 1.

Immunohistochemical Staining for COX-2

Four-micrometer-thick paraffin slides containing human meningiomas were obtained from the pathology department. Normal dura mater (that is, tissue obtained from a patient who underwent temporal lobectomy for intractable seizures), colon cancer, normal colon, breast cancer, and normal breast samples were used as positive and negative controls. Slides containing tissue were warmed for 20 minutes at 35°C and deparaffinized by bathing them with a series of xylene and alcohol solutions. We used Vectastain Elite Rabbit Kits (Vector Laboratories, Burlingame, CA), following the manufacturer’s suggested staining protocol. Briefly, the slides were treated with an antigen unmasking solution (Unmasking citrate buffer solution; Vector Laboratories). Equal amounts of protein (~35 μg) were resolved using sodium dodecyl sulfate–polyacrylamide gel electrophoresis (4–12% continuous gradient) and transferred to polyvinylidene difluoride Hybond-P membrane (Amersham Pharmacia, Piscataway, NY). The membrane was blocked and probed using a COX-2 rabbit polyclonal antibody (dilution 1:500, sc-7951; Santa Cruz Engineering, Santa Cruz, CA) at a dilution of 1:200. Following an incubation with the primary antibody, the slides were washed in PBS and treated with the supplied biotinylated secondary anti–rabbit antibody for 30 minutes. The tissue was then treated with the supplied avidin-biotin-peroxidase complex (ABC; Vector Laboratories). The final immunohistochemical staining was performed using the 3,3′di-aminobenzidine (DAB; Vector Laboratories) method for 8 minutes to obtain a reaction to the ABC. The slides were incubated at pH 6, counterstained with 1% toluidine blue for 15 seconds, and dehydrated by bathing them in a series of increasing concentrations of alcohol and xylene. Permount and coverslips were then applied to the slides containing the tissue.

Grading of Immunohistochemical Staining

The tissue on the slides was graded on the basis of a five-point scoring system demonstrating the percentage of cells that demonstrated stain. The scores were as follows: 0, no staining noted; 1, less than 1% of cells stained; 2, 1 to 10% of cells stained; 3, 11 to 50% of cells stained; and 4, more than 50% of cells stained. This scoring system has been described previously.11

Protein Extraction

Isolated COX-2 protein was obtained from surgical specimens and meningioma cells grown in vitro. Surgical specimens were obtained from our cryogenic tumor bank. Meningioma cells were grown in vitro as described later in this section. Surgical specimens (0.3–0.5 g) were homogenized with the aid of a tissue homogenizer and 3 ml of a WHO Grade I meningioma.2 Patient data associated with paraffin-stained tissue and the in vitro studies are listed in Table 1.

| Table 1 Characteristics of 135 patients with meningiomas
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of patients</td>
<td>135</td>
</tr>
<tr>
<td>sex, no. of patients (%)</td>
<td>male 48 (36) female 87 (64)</td>
</tr>
<tr>
<td>age (yrs) range</td>
<td>mean 56 ± 15 22–88</td>
</tr>
<tr>
<td>histological diagnosis, no. of patients (%)*</td>
<td>benign 128 (95) atypical 7 (5) malignant 0 (0)</td>
</tr>
</tbody>
</table>

* Meningiomas were graded according to WHO guidelines.
According to these studies, cell cultures derived from meningiomas grown in vitro have previously been characterized on microscopic, immunohistochemical, and ultrastructural levels.15-16 According to these studies, cell cultures derived from meningioma surgical samples appear to be of leptomenengial origin. This conclusion is based on the cells’ polygonal shape, negative staining for glial fibrillary acidic protein, and positive staining for vimentin and epithelial membrane antigen, as well as the presence of desmosomes identified using an electron microscope.15-16 Low-passage cells (that is, cells that have been subcultured no more than four times) [Passage 4] were used for these experiments, making fibroblast outgrowth less likely. Furthermore, G-band karyotyping was performed on four of the six cell lines studied for growth inhibition studies, with chromosomal abnormalities typical of meningiomas found in three (for example, the loss of chromosomes 22 and 1, and the addition of chromosomes 9q and 12q).

In Vitro Immunohistochemical Staining for COX-2

A final concentration of 0.1% DMSO was obtained for all experiments. An immunochemical analysis was performed on meningioma specimens grown in culture and immunohistochemically stained for COX-2. Purified celecoxib was a kind gift from Myriad Genetics, Salt Lake City, Utah.16 Celecoxib powder was dissolved in DMSO at 1000 mM and used as stock solution for all the in vitro experiments. A final concentration of 0.1% DMSO was obtained for all experiments.

TABLE 2

<table>
<thead>
<tr>
<th>Age (yrs), Sex*</th>
<th>Tumor Grade</th>
<th>Immunoactivity Grade†</th>
</tr>
</thead>
<tbody>
<tr>
<td>61, M (IOMM-Lee)</td>
<td>malignant</td>
<td>4</td>
</tr>
<tr>
<td>47, F</td>
<td>benign</td>
<td>4</td>
</tr>
<tr>
<td>55, M</td>
<td>benign</td>
<td>4</td>
</tr>
<tr>
<td>38, F</td>
<td>benign</td>
<td>4</td>
</tr>
<tr>
<td>71, M</td>
<td>benign</td>
<td>4</td>
</tr>
</tbody>
</table>

* Age and sex of the patient from when the specimen was obtained.
† See *Grading of Immunohistochemical Staining* for a complete explanation of staining grades.

Karyotyping: G-Band Chromosome Analysis

The IOMM-Lee cell line and three primary meningioma cell lines were grown in T-175 flasks to 80% confluence and processed by the University of Utah Cytogenetics Laboratory (Salt Lake City, UT) for G-band chromosome analysis. All three primary meningioma cell cultures were processed for karyotyping by their third cell culture passage.

In Vitro Immunohistochemical Staining for COX-2

An immunohistochemical analysis was performed on meningioma cells grown in a monolayer culture. The cells were subjected to tryptic treatment, plated in eight-well plastic slides, and allowed to remain in growth media for 2 to 3 days as described earlier. TheEcR293 cell line with an inducible COX-2 vector was also plated for use as a positive control. After removal of the growth media, methanol maintained at −10°C was added to each well for 10 minutes. After the methanol had been removed, the cells were allowed to air dry for 30 minutes at room temperature. The slides were rinsed with DPBS and bathed in 1% H₂O₂ solution for 10 minutes to quench endogenous peroxidases. This was followed by a DPBS rinse and treatment with 10% goat blocking serum for 30 minutes. After an additional DPBS rinse, the slides were incubated overnight at 4°C in the primary COX-2 rabbit polyclonal antibody (sc-7951; Santa Cruz Engineering) at a dilution of 1:50. Following incubation with the primary antibody, the slides were rinsed in DPBS and treated with a biotinylated secondary anti-rabbit antibody (Vectorstain Elite Rabbit- bit Kits, Vector Laboratories) for 30 minutes. The slides were again rinsed with DPBS and incubated for 30 minutes with preixed ABC. The final immunohistochemical staining was accomplished using a 10-minute DAB reaction to ABC. The slides were first rinsed in 0.5 M Tris buffer, pH 6, then rinsed in DPBS and distilled H₂O, and mounted in an aqueous solution.

Celecoxib Preparation

Growth Inhibition Studies

Growth inhibition studies with varying concentrations of celecoxib (0.25–1 mM) were performed on six meningiomas grown in vitro (that is, the IOMM-Lee cell line and five benign primary meningiomas). Cell counts were determined using both a bright-line hemocytometer and the MTT assay.

Cells that had been counted using a bright-line hemocytometer were placed in 12-well bottom plates at varying densities. The IOMM-Lee cell line was plated at a density of 3 × 10⁴ per well, whereas the benign cell lines were plated at densities of 3 to 4 × 10⁴ per well. Cells were treated in triplicate with either 0.1% DMSO vehicle (control group) or increasing doses of celecoxib (0.25 mM, 0.5 mM, and 1 mM). Media and drug were changed daily until the cells were harvested for cell counts. Cells were harvested at varying time points (0, 1, 2, and 3 days) by rinsing the wells with DPBS, dislodging the cells by incubating them in 0.5 ml of Accutase (MP Biomedicals, Irvine, CA) for 1 hour, declumping the cells by pipetting five times, and adding 5 µl of trypan blue before counting the number of cells per milliliter; the last step was performed in duplicate. Cells that were colored with trypan blue were excluded.

Cell viability was measured by performing a colorimetric MTT assay as recommended by the manufacturer (MTT Cell Proliferation Assay; American Type Culture Collection, Manassas, VA). The cells were placed in 96-well bottom titer plates at a density of 2 × 10⁴ cells per well and treated in triplicate with either 0.1% DMSO vehicle (control) or increasing doses of celecoxib (0.25, 0.5, and 1 mM). The MTT labeling reagent was added at various time points (1, 2, and 3 days) and allowed to react for 2 hours in the cell incubator. The supplied MTT detergent was added, and the cells were solubi-

The TUNEL Assay

Meningiomas were grown on plastic slides and treated with vehicle (0.1% DMSO) or 1 mM celecoxib. The cell cultures were fixed with 10% formalin on Day 1 or 2 and the TUNEL assay (Promega, Madison, WI) was performed as recommended; the fragmented DNA of apoptotic cells stained brown.

Expression of BAX Protein After Celecoxib Treatment In Vitro

Four meningioma cell lines (IOMM-Lee and three WHO Grade I meningiomas) were plated in T-175 flasks, allowed to grow to 80% confluence, and treated with vehicle (0.1% DMSO) or 1 mM celecoxib for 48 hours. The lanes were loaded with 35 µg of protein from whole-cell lysate and probed with the anti-BAX antibody (23 kD) as described earlier.

Statistical Analysis

In vitro cell counts were statistically analyzed using the Student

B. T. Ragel, et al.
COX-2 universally expressed in meningiomas

<table>
<thead>
<tr>
<th>WHO Tumor Grade</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>benign</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>16</td>
<td>111</td>
<td>128</td>
</tr>
<tr>
<td>atypical</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>malignant</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>16</td>
<td>111</td>
<td>128</td>
</tr>
</tbody>
</table>

* Grading: 0 and 1 = negative for COX-2; 2 through 4 = positive for COX-2. See Grading of Immunohistochemical Staining for a complete explanation of grading stages.

Results

Patient Demographics and Tumor Characteristics

Of the 135 patients studied, 64% were women and the patients ranged in age from 22 to 88 years with a median of 56 years (Table 1). Most tumors were histologically benign; there were only seven atypical and no anaplastic meningiomas. For the in vitro immunohistochemical staining studies, five cell lines were grown in monolayer cultures. Sixty percent of the cell lines had been obtained from male patients; the cell lines were derived from four benign meningiomas and one malignant (IOMM-Lee) tumor (Table 2). The G-band karyotyping was performed on three of six cell lines grown in culture for growth inhibition studies. Karyotyping of the IOMM-Lee cell line revealed chromosomal abnormalities that fit the initial description of that cell line made in 1990 (karyotype: modal number 49 (44–49),X,−Y,−1,add(2)(p11.2),add(5)(p13),add(6)(p13),(7)(p10)X,add(9)(q21),add(12)(q21),−17,add(14)(q13),add(19),add(20)).

Immunohistochemical Analysis of COX-2 in Meningiomas

Immunohistochemical staining for COX-2 was performed on 135 human meningioma surgical specimens and colon carcinoma controls. One hundred twenty-eight benign (95%), seven atypical (5%), and no (0%) anaplastic meningiomas stained positively for COX-2 (Table 3). The COX-2 immunoreactivity was found in the cytoplasm of all meningiomas stained positively for COX-2 (Table 3). The selective COX-2 inhibitor, celecoxib, decreased meningioma cell growth in a dose-dependent fashion in both the malignant IOMM-Lee cell line and six benign meningiomas grown in cell culture (Fig. 4). Doses ranging from 0.25 to 1 mM caused cell growth inhibition, which increased with higher doses. Statistical significance (p < 0.05) was reached when the control group was compared with all treatment groups (that is, groups treated with 0.25, 0.5, and 1 mM celecoxib) by Day 1.

Expression of the COX-2 Protein in Meningiomas

Four cryogenically stored human meningioma samples were processed for Western blot experiments. The COX-2 protein has a molecular weight of approximately 70 kD. Cytoplasmic and nuclear protein extracts were isolated. All the meningiomas sampled exhibited staining of a large band at approximately 70 kD in the cytoplasm extracts, and three of four stained positively in the nuclear extracts (Fig. 3).

Celecoxib-Induced Apoptosis and Inhibition of Meningioma Cell Growth in Culture Without Change in BAX Protein Expression

The selective COX-2 inhibitor, celecoxib, decreased meningioma cell growth in a dose-dependent fashion in both the malignant IOMM-Lee cell line and six benign meningiomas grown in cell culture (Fig. 4). Doses ranging from 0.25 to 1 mM caused cell growth inhibition, which increased with higher doses. Statistical significance (p < 0.05) was reached when the control group was compared with all treatment groups (that is, groups treated with 0.25, 0.5, and 1 mM celecoxib) by Day 1.

Rationale for COX-2 Inhibitors and Meningiomas

Although the cause of meningioma is unknown, head trauma has been suspected of playing a causal role since the 1800s, with reports of meningiomas developing in patients at the site of prior head trauma. In one case report the authors describe the extraction of a piece of wire from the center of a meningioma, its presence the result of an explosion that had taken place 20 years earlier. Several investigators have shown an increased incidence of meningiomas in patients with a history of head trauma, with elevated odds
ratios ranging between 1.2 and 6.4. Possible causal mechanisms of meningioma formation following head trauma include inflammation, neoplastic changes in meningeal tissue caused by healing, and the release of growth factors. All these factors may act as inciting factors in tumorigenesis. In fact, it has been suggested that the formation of a meningioma may occur in the setting of chronic inflammation triggered by head trauma. Recently, the inducible inflammatory enzyme COX-2 has been shown to be upregulated in animal head trauma models.

Cyclooxygenase is the rate-limiting enzyme in the synthesis of prostaglandins from arachidonic acid. The prostaglandins are a diverse group of auto- and paracrine hormones that mediate many physio- and pathological processes. Physiologically, prostaglandins regulate vascular homeostasis, kidney function, ovulation, and parturition. These compounds are equally important as mediators of inflammation, thrombosis, and pain. The formation of prostaglandins requires the catalytic activity of COX, which converts arachidonic acid to the prostaglandin endoperoxide, PGH2, from which all other prostaglandins are formed.

The COX enzyme exists as two isoforms, COX-1 and COX-2. The first, COX-1, is constitutively expressed in most tissues and is thought to serve in general "housekeeping" functions (for example, cytoprotection of the stomach and platelet aggregation). The second, COX-2, is induced by migratory cells (for example, macrophages, monocytes, and microglia) as a response to proinflammatory stimuli and is considered to be an important mediator of acute and chronic inflammatory states. Expression of COX-2 has a wide range of biological activities including angiogenesis, cellular proliferation, and the halt of apoptosis. Both enzymes are targets for therapeutic NSAIDs. The ability of NSAIDs to inhibit the COX enzyme is considered to be their major, but not sole, mode of function. The NSAIDs decrease COX activity through nonselective binding, selective binding to COX-2, or noncyclooxygenase COX-2 mechanisms. Nonselective COX inhibitors (for example, aspirin and ibuprofen) are clinically limited by their gastrointestinal and platelet side effects, which are attributed to COX-1 inhibition; therefore, selective COX-2 inhibitors were developed. Celecoxib (Celebrex) and rofecoxib (Vioxx) are specific COX-2 inhibitors that act as slow, time-dependent, irreversible inhibitors of COX-2. From a clinical standpoint, COX-2 inhibition is expected to produce antiinflammatory and analgesic effects without causing gastric ulcers or platelet dysfunction.

Relationship Between COX-2 and Cancer

Human cancers of the bladder, breast, uterine cervix, central nervous system, colorectum, esophagus, head and neck, liver, lung, pancreas, prostate, skin, and stomach overexpress COX-2 and produce more prostaglandins than the normal healthy tissues from which they are derived. Experimental evidence has demonstrated that unregulated COX-2 expression occurs at multiple stages in carcinogenesis and is important in the promotion of tumorigenesis.
COX-2 universally expressed in meningiomas

The NSAIDs are important agents for cancer prevention and as possible adjuncts to treatment for the following reasons: 1) COX inhibitors stimulate anticancer effects in vitro; 2) COX inhibitors inhibit carcinogenesis in carcinogen-induced and genetically driven rodent models; 3) COX inhibitors reduce the incidence of colorectal precancerous lesions and colon cancer (for example, familial adenomatous polyposis); and 4) COX inhibitors produce regression in precancerous lesions (for example, colorectal aberrant crypt foci and adenomas, and actinic keratoses of the skin) in genetic and sporadic cancer risk cohorts.9,51

Currently, celecoxib and rofecoxib are approved by the US Food and Drug Administration for their antiinflammatory, analgesic, and cancer-prevention properties in the treatment of rheumatoid arthritis, osteoarthritis, and familial adenomatous polyposis.10,13 On the basis of the aforementioned preclinical and clinical efficacy data obtained in celecoxib and rofecoxib and the ubiquitous overexpression of COX-2 in human neoplasia, the National Cancer Institute is currently tracking more than 20 Phase I, II, and III cancer trials on COX-2 inhibition in the treatment of colon, prostate, liver, lung, and breast tumors, and glioblastoma multiforme (source: National Cancer Institute clinical trials database found at http://www.cancer.gov/clinicaltrials).

Given the loose association of meningiomas with a history of head trauma, we postulated that chronic inflammation may play a role in meningioma development and that the inflammatory enzyme COX-2 may be associated with tumorigenesis. If these hypotheses are correct, blockade of COX-2 may hold therapeutic promise for the treatment of meningiomas.

Expression of COX-2 in Meningiomas

We performed an immunohistochemical analysis of 135 paraffin meningioma sections and five meningiomas grown in vitro for COX-2 and observed extensive staining in the majority of the tumors (Fig. 1 and Table 3). These findings are consistent with those of two other immunohistochemical studies, which demonstrated robust COX-2 staining in meningiomas. Lin and associates26 stained 83 meningiomas for COX-2 and found that an overwhelming percentage of tumors expressed COX-2. Matsuo, et al.,30 also showed strong COX-2 immunoreactivity in six surgical specimens. Immunohistochemically, as shown by our in vitro stainings, COX-2 localizes to both the cytoplasm and nuclear compartments. Our paraffin sections were counterstained with a nuclear stain, making it difficult to localize COX-2 staining to the nucleus. Further proof of COX-2 expression in meningiomas is supported by our Western blot data. A 70-kD band that stained positive for COX-2 protein was universally seen in the cytoplasmic extracts. Western blots for the nuclear extract demonstrated COX-2 immunoreactivity in three of four meningiomas. These findings lend further credence to our immunohistochemical data, demon-
strating extensive COX-2 expression in meningiomas. The presence of the 70-kD COX-2 protein in the nuclear extract in all but one meningioma is an interesting finding, which we attribute to an error in our nuclear extraction process.

Role of Celecoxib in Decreased Meningioma Cell Proliferation and Induction of Apoptosis

Celecoxib, a selective COX-2 inhibitor, was chosen because of its approval by the Food and Drug Administration and its superior antigrowth effects in vitro in several cell lines.

Dose-dependent inhibition of meningioma cell viability by celecoxib was seen in vitro in both a malignant cell line (IOMM-Lee) and six benign cell lines. Celecoxib decreased the growth of meningiomas in a monolayer culture at a dose as low as 0.25 mM; cell death was noted by Day 3 at a dose of 1 mM in one meningioma cell line. These results are compatible with extensive in vitro data obtained on numerous cell lines, which demonstrate growth inhibition by selective COX-2 inhibitors. Specifically, in a study of the glioma cell lines U87MG and U251MG, the COX-2 inhibitor NS-398 was shown to inhibit cell proliferation and migration.

The results of our study demonstrate that celecoxib induces apoptosis in vitro. Yamazaki and colleagues showed that in vitro celecoxib inhibited cell proliferation and induced apoptosis in colon cancer cells. Our findings also agree with those of Williams, et al., who demonstrated that

FIG. 4. Effects of varying concentrations of celecoxib (0.25 mM–1 mM) and DMSO vehicle on IOMM-Lee cells (A) and benign meningioma cells (B). The DMSO concentration was held constant at 0.1% for all time points. Cell counts were determined by bright-line hemocytometer in duplicate, with bars representing the standard error of the mean for three separate experiments. Data shown for benign meningiomas (B) are representative of six meningioma cell lines. The t-test used to compare control and treated data found a statistical significance between all treatment groups and control by Day 1 (p < 0.05). The growth curve plateau seen in the control cells of B are due to contact inhibition, a typical feature of benign meningiomas as they reach confluence in vitro.

FIG. 5. Celecoxib induces apoptosis of meningioma cells by Day 2. Apoptosis was assessed using the TUNEL assay. A: Negative TUNEL control. B: Positive TUNEL control. C: Drug control, vehicle only (0.1% DMSO). D: Celecoxib (1 mM). Brown staining indicates cells undergoing apoptosis.
COX-2 universally expressed in meningiomas

![Western Blots](image)

Fig. 6. Western blots of four meningioma cell lines grown in vitro and treated with 0.1% DMSO vehicle control (Con; Lanes 1, 3, 5, and 7) or 1 mM celecoxib (Tx; Lanes 2, 4, 6, and 8) for 48 hours. The cell lines tested in vitro included a malignant meningioma (IOMM-Lee; Lanes 1 and 2) and three WHO Grade I cell lines (Samples A–C; Lanes 3–8). Lanes were loaded with 35 μg of protein from whole-cell lysate and probed with anti-BAX antibody (23 kD). The IOMM-Lee cell line (Lanes 1 and 2) and all three WHO Grade I meningiomas (Lanes 3–8) displayed no observable change in BAX expression.

celecoxib potently induced apoptosis and inhibited progression of the cell cycle in colorectal carcinoma cells grown in culture. Interestingly, the investigators demonstrated that these effects were brought about by mechanisms independent of COX-2 inhibition. In other in vitro studies researchers have shown that COX-2 overexpression results in resistance to apoptosis, which in turn leads to dysregulation of normal cell death. Although the specific antiapoptotic mechanisms remain unclear, one possibility is modulation of the BAX-to-bcl-2 ratio, which is key in driving cell apoptosis. Prostaglandin E2 increases bcl-2, resulting in a BAX–to–bcl-2 ratio and favoring an antiapoptotic effect. In contrast, COX-2 inhibitors increase the levels of BAX and decrease those of bcl-2, thus favoring cell apoptosis.

Our in vitro Western blot studies for BAX demonstrated no change in the expression of this proapoptotic protein. This finding coincides with those of several other studies that demonstrated no change in BAX expression after celecoxib treatment. Interestingly, other investigators have demonstrated that celecoxib induces the translocation of BAX from the cytosol to the mitochondria by the simultaneous release of cytochrome C. Mitochondrial release of cytochrome C is a known trigger for caspase pathway activation and ultimate apoptosis. Given our findings, it is unclear whether the apoptotic and halt-of-cell-progression effects that celecoxib had on meningiomas in this study are BAX dependent.

In Vitro Celecoxib Treatment

The plasma half-life of celecoxib is 13 hours, with a steady state reached at 5 days. The range of our in vitro concentrations of celecoxib was 0.25 mM to 1 mM, which is at least 10 times higher than plasma levels obtained using standard dosing in humans. Growth studies accomplished at lower doses of celecoxib had no effect on cell growth in vitro within the relatively short time frame tested, making the higher dosing regimen necessary (data not shown). Currently, in vivo experiments at therapeutically achievable celecoxib plasma levels are being conducted in our laboratory with promising results (data not shown). Our findings of a discrepancy between the high in vitro drug dosing regimen and the low (clinically relevant) in vivo drug regimen agree with the findings of other investigators.

Role of COX-2 and COX-2 Inhibition in Meningiomas

In this paper we do not address the roles of COX-2 expression and its inhibition in meningioma tumorigenesis. In fact, many investigators suggest that celecoxib exerts its antitumor effects via pathways other than its blockade of COX-2. Additional studies in our laboratory are underway to delineate the role COX-2 plays in tumorigenesis and whether its blockade by celecoxib is necessary for the antitumor effects seen in vitro. Despite these shortcomings, we propose that celecoxib and other NSAIDs may have a role in the treatment of recalcitrant meningiomas.

Conclusions

The COX-2 enzyme is universally expressed in meningiomas. Celecoxib inhibits meningioma growth in vitro in a dose-dependent fashion, with evidence of apoptosis. The COX-2 inhibitors may have a potential role in the treatment of recurrent meningiomas.

Acknowledgments

We thank Kristin Kraus for her excellent editorial assistance and Spencer Dattage for his laboratory expertise.

References

49. Stempak D, Gammon J, Klein J, Koren G, Baruchel S: Single-
COX-2 universally expressed in meningiomas

Manuscript received July 21, 2004. Accepted in final form May 2, 2005.
This work was supported in part by a grant from the American Association of Neurological Surgeons Neurosurgery Research and Education Foundation to Brian Ragel.
Address reprint requests to: William T. Couldwell, M.D., Ph.D., Department of Neurosurgery, University of Utah, 30 North 1900 East, Suite 3B409, Salt Lake City, Utah 84132. email: william.couldwell@hsc.utah.edu.