Effect of Varying Number of OSEM Subsets on PET Lesion Detectability

A. Michael Morey1,2 and Dan J. Kadrmas, Ph.D.1,2

1Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology, University of Utah, Salt Lake City, Utah

2Department of Bioengineering, University of Utah, Salt Lake City, Utah

Abstract

Iterative reconstruction has become the standard for routine clinical positron emission tomography (PET) imaging. However, iterative reconstruction is computationally expensive, especially for time-of-flight (TOF) data. Block-iterative algorithms such as ordered-subsets expectation-maximization (OSEM) are commonly used to accelerate the reconstruction. There is a tradeoff between the number of subsets and reconstructed image quality. The objective of this work was to evaluate the effect of varying the number of OSEM subsets upon lesion-detection for general oncologic PET imaging.

Methods—Experimental phantom data were taken from the Utah PET Lesion Detection Database resource, modeling whole-body oncologic PET imaging of a 92 Kg patient with [18]F-fluorodeoxyglucose. The experiment consisted of 24 scans over 4 days on a TOF PET/CT scanner, with up to 23 lesions (diameter 6–16mm) distributed throughout the thorax, abdomen, and pelvis. Images were reconstructed with maximum-likelihood expectation-maximization (MLEM) and with OSEM using 2–84 subsets. The reconstructions were repeated both with and without TOF. Localization receiver operating characteristics (LROC) analysis was applied using the channelized non-prewhitened observer. The observer was first used to optimize the number of iterations and smoothing filter for each case that maximized lesion-detection performance for these data; this was done to ensure that fair comparisons were made with each test case operating near its optimal performance. The probability of correct localization (P_{LOC}) and the area under the LROC curve (A_{LROC}) were then analyzed as functions of the number of subsets to characterize the effect of OSEM on lesion-detection performance.

Results—Compared to the baseline MLEM algorithm, lesion-detection performance with OSEM declined as the number of subsets increased. The decline was moderate out to about 12–14 subsets, and then became progressively steeper as the number of subsets increased. Comparing TOF with non-TOF results, the magnitude of the performance drop was larger for TOF reconstructions.

Conclusion—PET lesion-detection performance is degraded when using OSEM with a large number of subsets. This loss of image quality can be controlled by using a moderate number of subsets (e.g. 12–14 or fewer), retaining a large degree of acceleration while maintaining high image quality. The use of more aggressive subsetting can result in image quality degradations that offset the benefits of using TOF or longer scan times.
INTRODUCTION

Iterative reconstruction algorithms that model Poisson statistics have become the standard for routine clinical positron emission tomography (PET) imaging. Maximum-likelihood expectation-maximization (MLEM) is the foundational algorithm; however, it is computationally expensive and requires many iterations to reach a suitable image. This problem is exacerbated with the emergence of time-of-flight (TOF) imaging, where the computational cost per iteration can be an order of magnitude slower than non-TOF (1). Block-iterative algorithms such as ordered-subsets expectation-maximization (OSEM) are widely used to accelerate iterative image reconstruction (2–8). Here, the projection data are divided into subsets which are operated on sequentially during each OSEM iteration. The number of subsets provides the approximate acceleration factor—one iteration of OSEM with N subsets provides an image roughly similar to that from N iterations of MLEM (4–6). However, there is a tradeoff between the number of subsets and image quality. When the number of subsets is large, the size of each subset is small and each contains less tomographic and statistical information. This can result in enhanced noise structures and other subset-related artifacts in the final image (4).

When using OSEM in the clinic, it is important to understand the tradeoff between increasing the number of subsets (more acceleration) and image quality degradations (noise, artifacts). One approach would be to study how spatial resolution, contrast, and noise are affected by changing the number of subsets; however, these measures of image fidelity do not necessarily predict performance for clinical tasks. The accepted approach for objectively evaluating image quality in PET is to perform task-based assessments where the different images are evaluated in terms of an observer’s ability to perform a given task, such as detecting a lesion in the image. This task includes both detecting a lesion that is actually present (sensitivity), as well as correctly ruling out noise blobs that are not lesions (specificity) (9). The objective of this work was to evaluate the relationship between the number of OSEM subsets and image quality in terms of lesion-detectability for general oncologic PET imaging with 18F-fluorodeoxyglucose (FDG).

Our group has established techniques for evaluating PET lesion-detection performance using specially-designed phantom experiments (10–13), and these data and methodologies have been combined in a resource called the Utah PET Lesion Detection Database Resource (14). The resource consists of experimental data and routines for performing localization receiver operating characteristics (LROC) analysis (15–17) with the channelized non-prewhitened (CNPW) numerical observer (18). Model observers such as the CNPW have been shown to correlate with human observers for simple lesion-detection tasks (10, 11, 18–24), and they offer the ability to quickly and repeatedly review large numbers of images. These data and LROC methods have previously been used to evaluate PET lesion-detection performance when modeling the point spread function (10), using time-of-flight data (11), and reducing scan times (13).

In this work, experimental data from the Utah PET Lesion Detection Database Resource were reconstructed with the MLEM algorithm (i.e., 1 subset) as a baseline, and with OSEM using 11 different numbers of subsets (2–84 subsets). The reconstructions were repeated both with and without TOF data. Lesion-detection performance was assessed for each case using the CNPW observer with LROC analysis. The following sections describe the...
experimental data, reconstruction and data processing, LROC study methods, and results. The effect of increasing the number of OSEM subsets on lesion-detectability is then analyzed, and conclusions are drawn based on the results.

MATERIALS AND METHODS

Experimental Data for Lesion-Detection Assessment

The lesion-detectability study used experimental data from the Utah PET Lesion Detection Database Resource (14) for the custom large whole-body phantom scanned on a Biograph mCT TOF PET/CT scanner (Siemens Medical Solutions) with timing resolution 527.5 ± 4.9 ps (25). The phantom, shown in Figure 1, had three main components: a 3-dimensional (3D) brain phantom; anthropomorphic thorax phantom containing liver, lungs, and rib cage; and a pelvis with bladder compartment. The approximate dimensions of the phantom are $43 \text{ cm} \times 28.0 \text{ cm}$ at the widest points, and total length is approximately 83.1 cm. Accounting for the missing mass of the arms and legs, the phantom models an approximately 92 Kg patient. The phantom also had a number of custom modifications designed to increase realism for modeling whole-body oncologic $^{18}\text{F-FDG}$ PET as described in (14).

The experiment consisted of six back-to-back whole-body scans acquired each day over four days of experiment. Each whole-body scan acquired listmode data for 4 min. per bed over 6 bed positions. Three of the four days had 21–23 “shell-less” ^{68}Ge ($T_{1/2} = 270.8\text{d}$) sources modeling lesions (26), diameters 6–16 mm, distributed throughout the phantom lungs, liver, and soft tissue compartments (mediastinum, abdomen, pelvis) to model tumors with focal $^{18}\text{F-FDG}$ uptake. The final day had no lesions present, providing true-negative images for the observer study. This multi-scan protocol provided numerous images and lesions with varying count levels and lesion target:background ratios. The overall activity levels for the 6 scans broadly covered the full range of activity levels representative of sites administering 370–555 MBq FDG with uptake times ranging from 60 to 120 min.

Image Reconstruction and Processing

The raw scan data, including listmode files, attenuation maps, scanner calibrations, and scatter and randoms estimates, were loaded to an offline workstation and reconstructed using manufacturer-supplied software (Siemens Medical Solutions). The baseline reconstruction algorithm was ordinary Poisson line-of-response (LOR) MLEM with spatially-variant point-spread function (PSF) modeling (27), and each scan was reconstructed both with and without TOF. The reconstructed image matrix was 168×168, with 4.073 mm pixels and 2.027 mm slice thickness. After reconstructing with MLEM, the reconstructions were repeated using OSEM with every available number of subsets. The sinogram data had 168 angles, and the reconstruction software required that the number of angles per subset be a multiple of two, giving the following numbers of subsets: 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, and 84. Thus, 12 non-TOF and 12 TOF reconstructions were performed for each scan: MLEM and 11 versions of OSEM covering 2–84 subsets.

One challenge in comparing different OSEM reconstructions is that the rate of iterative convergence depends on the number of subsets, and similarly the noise properties (and hence the best post-reconstruction filter) also depend on the number of subsets and iterations. In order to provide a fair comparison, it was important to objectively select the number of iterations and filter used for each case. The standard approach used with the Utah PET Lesion Detection Database Resource (10–14) is to empirically optimize the number of iterations and post-reconstruction filter for each algorithm that maximizes lesion-detectability performance for that algorithm. As such, each algorithm was run out to at least 120 MLEM-equivalent iterations (e.g., 20 iterations for OSEM6), with a minimum of 10 iterations for...
each case, and the intermediate images from each iteration were stored for subsequent processing and analysis. The ‘optimal’ number of iterations and smoothing filter were then selected using preliminary LROC studies as described in the next section below.

The true location of each lesion in the phantom was determined from phantom setup coordinate grids, and confirmed on the CT scans. As in (13), scans 2–5 were found to provide the most clinically-representative activity and noise levels, and data from these scans were used for the remainder of the study. This provided a total of 268 lesion-present test images (21–23 lesions × 4 scans/day × 3 days with lesions present) plus 268 corresponding lesion-absent test images (from the scans without lesions) to be used for the LROC study for each reconstruction algorithm.

LROC Analysis

Preliminary LROC studies were first used to select the ‘optimal’ number of iterations and post-reconstruction filter for each algorithm, ensuring that each algorithm was fairly compared at near-maximum performance. Here, 21 different three-dimensional Gaussian filters were applied to the images from each iteration, with standard deviations ranging from 0.0 (no filter) to 2.0 voxels in 0.1-voxel increments. The area under the LROC curve (A_{LROC}) was computed (see below) for each iteration-filter combination. Figure 2 shows how A_{LROC} changed as a function of iteration and filter for two TOF reconstruction cases and demonstrates that local changes to iteration and filter have minimal effects on A_{LROC}. The iteration and filter that maximized A_{LROC} were identified and selected for each algorithm; these values are listed in Table 1. Here, it is important to note that these parameters maximized A_{LROC} for this particular set of experimental data, and they do not necessarily represent (near-)optimal parameters for clinical use. The topic of optimizing the number of iterations and filter for clinical use is large and complex, and falls outside the scope of this work.

Empirical selection of the best number of iterations and filter required reading 7,834,176 test images to cover 268 lesion-present and lesion-absent test cases for each algorithm, iteration, and filter. It would not have been feasible to read this many images with human observers; however, the CNPW numerical observer completed this task within a few days of CPU time. The CNPW observer computes a numerical rating, analogous to a human observer’s confidence level, regarding the presence or absence of a lesion at each image location. The location with the highest rating was selected as the most-probable lesion location for the LROC analysis. Additional details on the CNPW observer (18, 21) and its training and application to our experimental phantom data (10–13) can be found in the references. As in this prior work, a radius of correct localization equal to 2.5 voxels was found to correctly identify ‘hits’ while minimizing random localizations, and was used throughout this study. Two figures-of-merit were used to quantify lesion-detection performance: the probability of correct localization (P_{LOC}) and the area under the LROC curve (A_{LROC}). P_{LOC} is simply the fraction of lesions correctly localized within the 2.5 voxel threshold. A_{LROC} is the area under the LROC curve, which plots the correctly-localized true positive fraction vs. the false positive fraction, computed from the observer rating data and known truth. Higher values for these measures indicate higher lesion-detection performance.

RESULTS

Example Images

Example images reconstructed for each number of OSEM subsets are shown in Figure 3. Here the MLEM image provides the baseline for comparison, and corresponds to OSEM with 1 subset. Increasing the number of subsets resulted in increased noise as well as subtle
shape artifacts in these images, especially for the highest numbers of subsets. The overall objective of this work was to evaluate how these changes in the images affect lesion-detection performance for general oncologic PET imaging. Consider, for example, the example images shown in Figure 4. This case had a true 8mm lesion in the left lung, and noise blobs of similar size and contrast in the mediastinum. The use of OSEM with 28 subsets resulted in lower contrast for the true (lung) lesion as compared to MLEM, coupled with increased contrast of the mediastinal noise blob. In this example, the CNPW observer correctly identified the lung lesion (true positive) on the MLEM image, but falsely identified the mediastinal noise blob (false positive) on the OSEM28 image. This example illustrates how subset-related artifacts can affect lesion-detection performance.

Lesion Detectability vs. Number of Subsets

Figure 5 presents the main results of this paper, showing how P_{LOC} and A_{LROC} changed as functions of the number of OSEM subsets. Lesion-detection performance declined overall as the number of subsets increased. The decline was moderate out to about 12–14 subsets, and then becomes progressively steeper as the number of subsets increased further. Comparing TOF with non-TOF results, the same trend in performance was observed, but the magnitude of the performance drop was much larger for TOF. Overall, these results demonstrate that lesion-detection performance is only slightly degraded when using a moderate number of subsets, suggesting that acceleration factors of as much as ~10x can be safely attained with OSEM. However, more aggressive subsetting can cause more significant losses in image quality and adversely affect lesion-detectability. The magnitude of these effects will be explored in the Discussion section.

DISCUSSION

When performing LROC studies, it is important to provide a context for interpreting the magnitude of differences in the figures-of-merit (i.e., in P_{LOC} and A_{LROC}) in clinically-relevant terms. The absolute magnitudes of P_{LOC} and A_{LROC} are largely determined by the experimental design. For example, one could include a large number of large, high contrast lesions that were easily detected—pushing the values of P_{LOC} and A_{LROC} close to one for all algorithms studied. Conversely, one could include many small, low contrast lesions in the test dataset, resulting in P_{LOC} and A_{LROC} values closer to zero. Ideally, the test dataset would exactly model the clinically-encountered distribution, in which case the absolute magnitude of the results would impart clinical meaning; however, such a distribution is not well understood and would vary widely by disease state. Furthermore, such a distribution would include many always-detectable lesions (found by all test algorithms) as well as many invisible lesions (e.g. micrometastases), both of which would not add to the statistical power of the study for differentiating the test algorithms. The lesion test data used here, as for most lesion-detectability studies, were designed to provide high statistical power for differentiating and ranking the test algorithms studied. As such, the differences in the results should be interpreted within a meaningful context.

We provide two such contexts in this work. First, the impact of TOF vs. non-TOF upon PET lesion-detection performance has previously been evaluated in both phantoms and patients, and is becoming well understood (11, 13, 28–30). Comparing the TOF vs. non-TOF results in Figure 5, one sees that the TOF reconstruction with 42 subsets provided approximately the same lesion-detection performance as the non-TOF reconstruction with MLEM. In essence, the degradation of using 42 subsets balanced and offset the benefit of using TOF in these data. The degradation from using 28 subsets cost approximately 20% of the benefit of TOF. While these results should not be construed as exact quantifications, they do provide a context for assessing the significance of the changes observed in the results.
To provide additional context for interpreting the results, we repeated the MLEM TOF reconstructions and computed A_{LROC} as a function of scan time. Here, the raw listmode PET data files were statistically pruned from 240 sec. per bed position to 180, 120, and 90 sec. per bed position (corresponding to whole-body scan times of 24, 18, 12, and 9 min., respectively). The technique was the same as that presented in (13). Repeating the LROC analysis for these images, we computed the change in A_{LROC} as a function of scan time for MLEM. The results are shown in Figure 6, plotted alongside the results for changing the number of subsets. Here, using OSEM with 21 subsets was found to result in the same loss of detectability as found for MLEM when reducing the scan time from 240 to approximately 205 sec. per bed position. Overall, these data suggest that reconstructing with OSEM up to about 12–14 subsets has only a moderate effect upon lesion-detection performance, but using more subsets can result in more significant degradations.

CONCLUSION

When using OSEM for tomographic reconstruction, the number of subsets provides the approximate acceleration factor for this algorithm as compared to MLEM. However, increasing the number of subsets also results in increased noise and subset-related artifacts in the image. This work evaluated the effect of changing the number of OSEM subsets on lesion-detection performance for general oncologic PET imaging. As compared to the baseline MLEM algorithm, lesion-detection performance declined as the number of OSEM subsets increased. The decline was moderate out to approximately 12–14 subsets for the data studied here, beyond which performance dropped more rapidly with the number of subsets. Time-of-flight PET reconstructions showed greater effect than non-TOF reconstructions. The degree of loss of lesion-detectability with 21 subsets was similar to that observer when reducing the scan time from 240 to 205 sec. per bed position. Similarly, the use of 42 subsets with TOF data offset the value of TOF, resulting in the same A_{LROC} as non-TOF reconstructed with MLEM. We conclude that PET lesion-detection performance is degraded when using OSEM with a large number of subsets for both non-TOF and TOF reconstructions. This loss of image quality can be controlled by using a moderate number of subsets (e.g. 12–14 or fewer), retaining a large degree of acceleration while maintaining high image quality.

Acknowledgments

This work was supported by grant R03EB014454 from the National Institute of Biomedical Imaging and Bioengineering. Support for the experimental data was also provided in part by the National Cancer Institute under Grant R01CA107353, by Siemens Medical Solutions, and by the Ben B. and Iris M. Margolis Foundation. The authors would also like to thank the anonymous reviewers, whose comments and suggestions greatly improved the paper.

References

J Nucl Med Technol. Author manuscript; available in PMC 2013 December 09.

FIGURE 1.
The whole body phantom, shown on the PET/CT scanner table (top), consists of a brain compartment; thorax with liver, lungs, and rib cage/spine; and pelvis with bladder. It models a patient of approximately 92 Kg. Coronal CT (bottom left) and PET (bottom right) images show the main phantom compartments and structures. Example lesions can also be seen in the PET image in both lungs, the mediastinum, and pelvis regions.
FIGURE 2.
Example analysis results used for selecting the number of iterations and filter strength for each case studied. The plot on the left (A) shows A_{LROC} vs. subiteration for MLEM and OSEM14 (where 1 subiteration represents 1 full pass through the data; i.e., 1 iteration MLEM = 1 subiteration, and 1 iteration OSEM14 = 14 subiterations). Here the data are shown for the filter that maximized A_{LROC} at each subiteration. The analogous plot on the right (B) shows A_{LROC} vs. filter SD, where each datum is shown for the number of iterations that maximized A_{LROC} for that filter strength. These data represent a portion of the multi-dimensional sampling used to optimize the number of iterations and filter strength for the phantom data used in this work.
FIGURE 3.
Example reconstructed images with TOF for each number of OSEM subsets, showing a slice in the mediastinum with a 10mm diameter hot lesion in the left lung. Each image is shown at approximately 56 MLEM-equivalent iterations. Increasing noise and subtle shape-related artifacts can be observed in the images as the number of subsets increases.
FIGURE 4.
Example TOF images for MLEM and OSEM28 with optimal iteration and filter as determined by this study, demonstrating potential effects on lesion-detectability. The focus in the left lung is a true 8mm hot lesion, and the foci in the mediastinum are noise artifacts. Horizontal profiles showing relative intensity (arbitrary units), show that OSEM28 resulted in a loss of contrast for the lung lesion (right black arrow), coupled with an increase in contrast for the mediastinal noise blobs (left black arrow), as compared to MLEM. This example represents a case where the observer identified the correct (lung) lesion on the MLEM image (i.e., true positive reading), but misidentified the mediastinal noise blob as a lesion on the OSEM28 image (i.e., false positive).
FIGURE 5.
Lesion-detection performance, as measured by P_{LOC} (A) and A_{LROC} (B), plotted as a function of the number of OSEM subsets for both TOF and non-TOF reconstructions. Performance declined overall as the number of subsets increased, with a marked drop in performance beyond approximately 28 subsets. For the TOF reconstructions, the performance drop at 42 subsets effectively canceled the benefit of TOF.
FIGURE 6.
Comparison of how lesion-detection performance, as quantified by A_{LROC}, is affected by increasing the number of OSEM subsets or decreasing the scan time for TOF reconstructions. These data provide a context for interpreting the significance of the changes in A_{LROC} observed in this work. For example, the use of approx. 32 subsets would result in the same loss of performance as shortening the scan time from 240 to 180 sec. per bed position.
TABLE 1

Selected Reconstruction Parameters

<table>
<thead>
<tr>
<th>No. Subsets</th>
<th>Non-TOF</th>
<th></th>
<th>TOF</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. Iterations</td>
<td>Filter SD (voxels)</td>
<td>No. Iterations</td>
<td>Filter SD (voxels)</td>
</tr>
<tr>
<td>1</td>
<td>120</td>
<td>1.3</td>
<td>72</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>58</td>
<td>1.3</td>
<td>36</td>
<td>1.2</td>
</tr>
<tr>
<td>3</td>
<td>37</td>
<td>1.4</td>
<td>23</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>1.2</td>
<td>21</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>1.4</td>
<td>7</td>
<td>0.9</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>1.4</td>
<td>13</td>
<td>1.3</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>1.3</td>
<td>5</td>
<td>1.2</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>1.5</td>
<td>6</td>
<td>1.1</td>
</tr>
<tr>
<td>21</td>
<td>7</td>
<td>1.2</td>
<td>3</td>
<td>0.9</td>
</tr>
<tr>
<td>28</td>
<td>7</td>
<td>1.4</td>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>42</td>
<td>4</td>
<td>1.2</td>
<td>2</td>
<td>0.8</td>
</tr>
<tr>
<td>84</td>
<td>5</td>
<td>1.3</td>
<td>1</td>
<td>0.8</td>
</tr>
</tbody>
</table>