A 3 T Sodium and Proton Composite Array Breast Coil

Joshua D. Kaggie,1,2 J. Rock Hadley,1* James Badal,3 John R. Campbell,3 Daniel J. Park,3 Dennis L. Parker,1 Glen Morrell,1 Rexford D. Newbould,4 Ali F. Wood,3 and Neal K. Bangerter1,3

Purpose: The objective of this study was to determine whether a sodium phased array would improve sodium breast MRI at 3 T. The secondary objective was to create acceptable proton images with the sodium phased array in place.

Methods: A novel composite array for combined proton/sodium 3 T breast MRI is compared with a coil with a single proton and sodium channel. The composite array consists of a 7-channel sodium receive array, a larger sodium transmit coil, and a 4-channel proton transceive array. The new composite array design utilizes smaller sodium receive loops than typically used in sodium imaging, uses novel decoupling methods between the receive loops and transmit loops, and uses a novel multichannel proton transceive coil. The proton transceive coil reduces coupling between proton and sodium elements by intersecting the constituent loops to reduce their mutual inductance. The coil used for comparison consists of a concentric sodium and proton loop with passive decoupling traps.

Results: The composite array coil demonstrates a 2–5× improvement in signal-to-noise ratio for sodium imaging and similar signal-to-noise ratio for proton imaging when compared with a simple single-loop dual resonant design.

Key words: sodium; phased array; RF coil; decoupling; breast cancer; metabolic imaging

Cancer is responsible for a quarter of all deaths in the United States (1). Breast cancer is projected to cause 458,000 deaths worldwide with 1,383,000 new cases worldwide in 2012 (2). Breast cancer is also estimated to include 29% of all new cancer cases in women in the United States during 2012, resulting in 14% of cancer related deaths (1). Early detection and improved treatment have increased breast cancer survival rates in the United States over the past two decades (1). While proton (1H) magnetic resonance imaging (MRI) is used for cancer detection due to its improved sensitivity when compared with mammography and ultrasound, 1H-MRI suffers from intermediate specificity which can result in false positive studies leading to unnecessary interventions (3). Because sodium (23Na) concentration is known to increase in malignant lesions when compared with surrounding healthy tissues (4,5), 23Na-MRI may be able to improve specificity, potentially improving evaluation and assessment of breast lesions (6).

Sodium MRI shows promise in characterizing and assessing tumor viability (4,7), cartilage health (8–11), renal failure (12,13), tissue damage following stroke (14), and multiple sclerosis (15). However, in comparison with conventional 1H-MRI, 23Na-MRI is challenging due to relatively low 23Na concentrations in biological tissues, rapid biexponential signal decay, and a low gyromagnetic ratio. Despite these challenges, recent improvements in coil and gradient hardware, the availability of whole-body scanners with high polarizing field strengths, and the development of more efficient pulse sequences have spurred renewed interest in 23Na-MRI (7). These advances have enabled the acquisition of higher quality in vivo 23Na-MRI images than previously possible, often within clinically reasonable scan times (16–18). While 23Na-MRI has become more promising, there is still a need for improved image quality and signal-to-noise ratio (SNR) to make quantitative 23Na-MRI feasible for many of the clinical applications under consideration.

Phased array coils can be used to improve the SNR of 23Na-MRI. This is achieved through simultaneous data acquisition from multiple surface coils which have inherently increased signal sensitivity and limited noise volume by being placed in close proximity to the object or anatomy of interest (19). Specifically designed coil arrays also allow reductions in image acquisition time through the application of parallel imaging techniques (20–22). Phased array coil concepts have been extensively applied to 1H-MRI coil design (23–26), routinely providing improved SNR and accelerated image acquisition (19) compared with that provided by volume coils (27) or other large coils of similar area (28). However, phased arrays have not been widely used in nonproton imaging, and typically require sophisticated custom hardware for implementation on commercial scanners. Despite these challenges, sites with the capability to
support multichannel nonproton receivers are becoming increasingly common. The first reported nonproton phased array was built for phosphorus imaging in 1992 (29) almost a decade before the first reported \(^{23} \text{Na} \) array at 1.5 T in 2000 (30). In the past few years, there has been a substantial increase in the number of \(^{23} \text{Na} \) coil arrays developed for 3 T (31–35), 4 T (36), and 7 T (37–39). Some of these array configurations are dual resonant, with the ability to image \(^1 \text{H} \) and \(^{23} \text{Na} \) without repositioning the subject (33–37).

This article presents a new dual resonant breast coil design consisting of a 7-channel \(^{23} \text{Na} \) receive array, a larger \(^{23} \text{Na} \) transmit coil, and a 4-channel \(^1 \text{H} \) transceive array. The new composite array design uses smaller \(^{23} \text{Na} \) receive loops than those typically used in \(^{23} \text{Na} \) imaging. Novel methods are also used to decouple the receive loops from the transmit loops. A novel multichannel \(^1 \text{H} \) transceive coil is superimposed on the \(^{23} \text{Na} \) receive array, and decoupling between \(^1 \text{H} \) and \(^{23} \text{Na} \) elements is achieved by intersecting the constituent loops to reduce the mutual inductance between the \(^1 \text{H} \) and \(^{23} \text{Na} \) arrays. The performance of the new array design (both SNR and homogeneity) is compared with that of a coil used in prior studies consisting of a single \(^{23} \text{Na} \) loop concentric with a single \(^1 \text{H} \) loop (40,41), both with decoupling trap circuits (42–44). Comparisons were performed both in a phantom and in vivo. The new design achieves excellent \(^{23} \text{Na}-\text{SNR} \) over the sensitive volume while also providing good image quality for conventional \(^1 \text{H} \) imaging.

METHODS

The objective of this study was to determine whether a \(^{23} \text{Na} \) phased array would be useful in improving \(^{23} \text{Na}-\text{MRI} \) at 3 T. The secondary objective was to create acceptable \(^1 \text{H} \) images with the \(^{23} \text{Na} \) phased array in place.

The new dual-resonant \(^{23} \text{Na}/^1 \text{H} \) composite array design is first described, including the \(^{23} \text{Na} \) receive array loops and circuitry, the \(^{23} \text{Na} \) transmit coil, the \(^1 \text{H} \) transceive array elements, the associated transmit and transmit/receive (TR) switches, and the decoupling techniques used. Subsequently, the trap coil consisting of a \(^{23} \text{Na} \) loop concentric with a \(^1 \text{H} \) loop is used for comparison. Finally, the phantom and in vivo studies are detailed for assessment of coil performance. All experiments were done on a Siemens TIM Trio 3 T MRI scanner (Siemens Healthcare AG, Erlangen, Germany).

\(^{23} \text{Na}/^1 \text{H} \) Dual Resonant Composite Array

The composite array design consists of a hemispherical fiberglass former with seven \(^{23} \text{Na} \) receive loops, four \(^1 \text{H} \) transceive loops, and a single circular \(^{23} \text{Na} \) transmit loop that surrounds the perimeter of the coil (Fig. 1a). A patient friendly support structure is used to position the coil and subject (Fig. 1b) (45).

\(^{23} \text{Na} \) Receive Array

Before construction of the \(^{23} \text{Na} \) receive array, multiple 65 mm diameter loops were tested with different gauge copper wires and capacitor positions. Wire thicker than 14AWG was not considered feasible for a receive array with small loops, due to the difficulty of using very thick wire for coil construction. The quality factors (Q) (46) of these loops were measured using two stationary decoupled magnetic field probes when the coil was unloaded and loaded (Table 1). The highest \(Q_{\text{ratio}} \) values were measured using 14 AWG and 16 AWG wire with two capacitors per loop (Table 1). Because these values

![Image](https://via.placeholder.com/150)

FIG. 1. a: \(^{23} \text{Na}/^1 \text{H} \) dual resonant multichannel composite array. b: Complete (unpadded) patient setup on the scanner table, with a 10 cm spherical phantom placed in the hemispherical fiberglass former. An acrylic ramp and board supports the patient in the prone position. The RF Tx/Rx circuitry is between the scanner table and the patient support device.
were similar, the receive array was constructed using 16AWG wire for its increased ease of use when overlapping the coils on the hemispherical former.

Seven 16AWG circular 23Na receive loops were positioned on a hemispherical fiberglass former (Fig. 1a). Six of the loops are 65 mm in diameter, and surround a single 75 mm diameter loop placed at the top of the hemisphere (Fig. 2a). Each loop was positioned for appropriate overlap decoupling. A loaded isolation (S_{21}) of -18 dB was achieved between adjacent coils without preamplifier decoupling. The preamplifiers (Stark Contrast, Erlangen, Germany) had a gain of -35 dB and noise figure less than 0.5 dB. The change in any receive coil sensitivity (S_{21}) while loaded, measured with two decoupled magnetic probes with and without preamplifiers, was 15 dB. Each loop incorporates a matching and a tuning capacitor (Series 1111P_P501X, Passive Plus, Huntington Station, NY; GYA36000, Sprague-Goodman, Westbury, NY), with combined active/passive 23Na decoupling circuitry positioned at the tuning capacitor location (Fig. 2b). The capacitor values are ~ 180 pF and ~ 1000 pF for tune and match, respectively. The change in loop sensitivity (S_{21}) between resonant and detuned states is greater than 45 dB when loaded, when using two decoupled magnetic probes. The maximum and average off diagonal noise correlation coefficient was 0.49 and 0.29, respectively (Fig. 3).

Combined active/passive decoupling is achieved by placing a crossed diode pair (MA4P7464F-1072T, Macom, Lowell, MA) in series with an inductor that is resonant with the tune capacitor when forward-biased (Fig. 2b). Active and passive decoupling were combined to simplify the coils by using only one decoupling circuit, while maintaining the ability to detune the coil with DC biasing and detune the coil if high power radio-frequency (RF) is used with improper current biasing. The loops remain resonant during receive when the diodes are not biased. Each loop is connected to an independent DC bias line that provides the 100 mA/10 VDC or -30 VDC bias current. To avoid biasing the crossed diodes with the negative DC bias, a single diode was added into the bias line so that only positive DC current can be supplied to the loops (Fig. 4a). By eliminating the negative DC voltage at the loop, the crossed diodes are not activated during receive.

Passive 1H traps are not used in the 23Na receive loops because they would increase coil resistance, reducing sensitivity. Unfortunately, the match/tune capacitor values are too large to implement effective active 1H decoupling across those capacitors so no active 1H decoupling is implemented in the 23Na loops. Larger coils or decreased wire thickness could be used to decrease the capacitor values (Table 1); however, this would likely result in reduced 23Na receive sensitivity and the capacitor values would still be too large to implement effective active 1H-decoupling.

Each receive loop is attached to a 60 cm coaxial cable (<1/10 of the NMR signal wavelength for 23Na at 3 T in the coaxial cable). The long coaxial cable allows the receive circuitry to be placed in a convenient location for patient positioning and comfort. A 23Na trap on the coaxial cable shield is used to reduce common mode currents in the long cables, and a phase shifter circuit is used to obtain a 180-degree phase shift between the coil and preamplifier to achieve preamplifier decoupling (19).

![FIG. 2. a: Top view schematic of the composite array coil layout. The proton coil layout is shown in red/dashed. The sodium loops are shown in black/solid. b: Circuit diagram of the 23Na receive loops. c: Schematic of the single channel 23Na transmit coil. d: Enlarged view of the decoupling circuitry for the transmit coil. e: Warped schematic of the 1H transceive loops. The capacitors for matching, tuning, and decoupling adjacent loops are marked on one loop as Cm, Ct, and Cd, respectively.](image-url)
Decoupling is achieved by breaking the RF current path with serial diodes in two positions. At each of these two positions, four diodes are placed in parallel, equally spaced along the acrylic tube to distribute current along the height of the coil. The coil is designed so that it is resonant when forward-biased with +100 mA and detuned when unbiased. When forward-biased, the coil remains tuned and the diodes remain on even when high RF transmit power is used (up to many kilowatts) (47–49). As shown in Figure 2d, a fifth diode was placed antiparallel to the original four diodes to protect them from large reverse bias voltages that can occur during transmit resulting in permanent diode breakdown if not properly forward-biased. Loaded isolation between the detuned transmit coil and resonant receive coils was measured to be −39 dB. Loaded isolation between the tuned transmit coil and detuned receive coils was −42 dB.

\(^1H \) Transceive Array

The inherent drawback of many \(^1H\) and \(^{23}Na\) coil configurations is that the \(^{23}Na\) loops have high capacitor values when compared with the \(^1H\) loops, creating low impedance loops at the \(^1H\) frequency. The low impedance \(^{23}Na\) loops have a shielding effect at the \(^1H\) frequency, resulting in \(^1H\) flux blockage (50), which is similar to the effect of a solid conducting copper loop. When a \(^{23}Na\) and \(^1H\) loop overlap, the \(^1H\) loop will be affected by the presence of the \(^{23}Na\) loop to a much greater degree than the \(^{23}Na\) loop will be affected by the presence of the \(^1H\) loop. When frequency shift, \(Q_{ratio}\), and SNR are measured for two overlapping in-plane 65 mm diameter \(^1H\) and \(^{23}Na\) loops, the \(^{23}Na\) loop will have only minor changes (<1%) when a \(^1H\) loop is present, regardless of the center-to-center coil distance. In comparison, the \(^1H\) loop \(Q_{ratio}\) decreases with increasing overlap, and \(^1H\) frequency greatly increases when the center-to-center distance is less than one radius. The shielding effects of the \(^{23}Na\) loops on the \(^1H\) RF can be reduced substantially by intersecting the \(^{23}Na\) loops with the \(^1H\) elements (50).

The composite array design uses four local \(^1H\) loops arranged as a ladder network (51), with a minimum loaded isolation between any two loops of the coil measured at −9.5 dB. The \(^1H\) loops are positioned over the \(^{23}Na\) receive array such that the wire elements of the \(^1H\) loops bisect the \(^{23}Na\) loops (Figs. 1a and 2a). The \(^1H\) loops are mounted 1 cm away from the fiberglass former to reduce coupling with the \(^{23}Na\) loops, to fit over \(^{23}Na\) loop circuits, and to improve \(^1H\) homogeneity. The tune and match capacitors were adjustable (Series 1111P_PS01X, Passive Plus, Huntington Station, NY in conjunction with Series NMA_HV, Voltronics Corp, Salisbury, MD) so that the coil could be tuned/matched without any additional circuitry such as a match inductor (19). The capacitors on the shared rungs were used to minimize coupling between adjacent loops. The capacitor values are ~30 pF, ~14 pF, and ~160 pF for the tune, decoupling, and match capacitances, respectively.

The \(^1H\) transceive loops contain a crossed diode pair that is forward-biased during \(^1H\) transceive but unbiased during \(^{23}Na\) transmission and reception (Fig. 2e). The crossed diode pair allows easy tuning/detuning of the \(^1H\) loops for further decoupling between the \(^1H\) and \(^{23}Na\) loops. The minimum isolation between any \(^{23}Na\) receive loop and \(^1H\) loop when the coil was loaded was: −20 dB at the \(^{23}Na\) resonant frequency (32 MHz) when the \(^1H\) loops were tuned, −37 dB when the \(^1H\) loops were detuned; −41 dB at the \(^1H\) resonant frequency (123 MHz) when the \(^1H\) loops were tuned, and −75 dB when the \(^1H\) loops were detuned. The isolation between \(^{23}Na\) and \(^1H\) loops was unchanged regardless of whether the \(^{23}Na\) loops were tuned.

The \(^1H\) loops each use quarterwave cables that, when combined with the quarterwave cable in the TR switches described below, form a halfwave phase shift between the loops and preamplifiers for optimum preamplifier decoupling.

Dual Resonant TR Switching

The scanner provides a single transmit port for both the \(^1H\) and \(^{23}Na\) RF transmit signal. The transmit RF is passively filtered with the use of \(^1H\) and \(^{23}Na\) traps (Fig. 4b) before going into the \(^{23}Na\) transmit switch or \(^1H\) power splitter (Fig. 4c). The filter attenuates the \(^1H\) signal by −39 dB on the \(^{23}Na\) output, and the \(^{23}Na\) signal by −47 dB on the \(^1H\) output.

After the filter, the \(^{23}Na\) transmit signal passes through a large capacitor before arriving at the cylindrical \(^{23}Na\) transmit coil. A DC bias line inserted between the large capacitor and transmit coil allows the transmit coil to be biased during \(^{23}Na\) transmit with +100 mA and unbiased during \(^{23}Na\) receive.

The \(^1H\) transmit signal is split across four different ports by using 90° hybrid couplers (1J0280-3, Anaren, East Syracuse, NY) to initially divide the signal evenly in half, followed by two more hybrid couplers to divide the signal evenly between four ports (Fig. 4c). The isolation port of each coupler is terminated with 50 Ω. Between the initial coupler and one of the secondary couplers, an extra cable length is added to create a 45° phase shift. The four outputs of the power splitter each have equal magnitude but different phase shifts of 0°, 45°, 90°, and 135°. Each output is then connected to a \(^1H\) TR switch.
The 1H TR switches are different from standard TR switches, in that they incorporate a reverse diode where only a standard forward diode would typically be used, offering improved protection against incorrect DC biasing (Fig. 4d). The TR switches are supplied with a forward current during transmit (DC1 in Figure 4d) to activate the preamplifier protection circuitry, which consists of a quarterwave cable and a diode that is shorted during transmit. A second DC line (DC2 in Figure 4d) was added between the TR switch and the loops, so that the 1H loops can be turned on during 1H transceive. Large DC blocking capacitors are used to ensure that the DC bias that controls the TR switch is independent from the DC bias that controls the loops.

The 1H TR switches are different from standard TR switches, in that they incorporate a reverse diode where only a standard forward diode would typically be used, offering improved protection against incorrect DC biasing (Fig. 4d). The TR switches are supplied with a forward current during transmit (DC1 in Figure 4d) to activate the preamplifier protection circuitry, which consists of a quarterwave cable and a diode that is shorted during transmit. A second DC line (DC2 in Figure 4d) was added between the TR switch and the loops, so that the 1H loops can be turned on during 1H transceive. Large DC blocking capacitors are used to ensure that the DC bias that controls the TR switch is independent from the DC bias that controls the loops.

23Na/1H Dual Resonant Trap Coil

Multiple sodium breast MR studies to date have used 23Na/1H dual resonant trap coils (40,41). To gauge the performance of the composite array design, the composite array is compared with a coil with a single 1H loop concentric with a single 23Na loop that is similar to coils used previously in dual resonant 23Na/1H breast MRI (Fig. 5). Both the 1H and 23Na loops are single-turn coils built using 10 mm wide copper tape placed on a 65 mm tall 133 mm diameter acrylic tube. The 23Na loop was positioned so that it would surround the center of the breast with a 10 mm gap between the 1H and 23Na loops. The mutual inductance between the 1H and 23Na loops is reduced through a single passive resonant trap in each coil (Fig. 5b) (42–44). The traps were tuned before insertion into the coil. The 23Na loop has four tuning capacitor junctions with \sim390 pF per junction and a match capacitance of \sim600 pF. The 1H loop has three tuning capacitor junctions with \sim17 pF per junction and a match capacitance of \sim42 pF. The 1H trap on the 23Na loop has a 41 pF capacitor and the 23Na trap on the 1H loop has a \sim780 pF capacitor. Loaded isolation measured between the 1H and 23Na loops was \sim30.5 dB at 1H frequency and \sim14.5 dB at 23Na frequency. The low isolation at 23Na frequency and larger isolation at 1H frequency does not completely indicate the effect of each coil on each other, because the presence of the 23Na coil affects the 1H-SNR far more than the 1H coil affects the 23Na-SNR (50). Switching for both 1H and 23Na channels was done using a dual-resonant TR switch (Stark Contrast, Erlangen, Germany).

The trap coil was compared with a similar dual-tuned coil without traps and to single-tuned coils without traps to consider the effects of 1H/23Na coil coupling at 3 T. The 23Na loop on the trap coil received 80% of the SNR of the single-tuned 23Na coil. The SNR performance of the 23Na loop on the dual-tuned coil that contained no traps had no detectable difference from that of the single-tuned 23Na coil. The 1H loop on the trap coil had similar SNR when compared with the single-tuned 1H coil and received 1–4 times the SNR of the dual-tuned coil without traps. The primary advantage of the traps is to improve 1H-SNR by reducing 23Na shielding effects, despite the decreased 23Na-SNR caused by the non-zero impedance of the trap (43). When comparing a single resonant 1H loop to a 1H loop on a dual-tuned coil without traps, the dual-tuned coil will have similar 1H-SNR near the 1H loop but will exhibit significant reductions in

FIG. 4. a: Circuit diagram of the 23Na receive loops and hardware. The active/passive trap was forward-biased during 23Na transmit, detuning the receive loops. The phase shifter completed a half-wave phase shift between the coil and preamp for preamp decoupling of the loop during the receive portion of the pulse sequence. b: Traps were used to filter the 1H and 23Na Tx RF signal. c: The 1H 4-way power splitter used three 90° hybrid couplers and a coaxial cable phase shifter to split the transmit power evenly between each element of the 1H transceive array, with each element transmitting at a different phase. d: The TR switches for the 1H TxRx loops had DC1 forward-biased during transmit, whereas DC2 was forward-biased during 1H transmit and receive.
SNR on the opposite side of the 23Na loop (often losing as much as 75% of the SNR).

Comparisons to the composite array were done with the trap coil design due to the trap coil’s use in published 23Na breast studies (5,40,41). The trap coil is placed over a hemispherical fiberglass former similar to the one used with the composite array. During experiments, the coil was placed in a support structure (Fig. 1b) (45) such that the subject could lie prone, head first on the scanner table, to reduce respiratory and other motion artifacts. The support structure consists of an acrylic ramp, a flat carbon fiber board that holds the coil, and a head rest. The entire setup is padded for subject comfort during scanning.

Phantom Studies

A fast-gradient spoiled sequence using the 3D cones k-space trajectory was used to image 23Na in a 10 cm diameter spherical NaCl/CuSO$_4$ phantom (18). The 3D cones sequence consists of spirals that follow a cone-like trajectory, using cones of many different shapes and sizes to fill k-space for a given resolution and field of view (FOV). The 3D cones sequence is used to minimize image blurring and signal loss caused by the short T_2^* of 23Na as the trajectory achieves more efficient k-space coverage than radial acquisition trajectories and samples the signal before significant T_2^* decay (52).

Phantom studies were conducted with the composite array fully assembled. A spherical phantom with concentrations of 12 mM CuSO$_4$ and 150 mM NaCl were used. The 3D cones scan parameters were: TR/echo time (TE) = 50/0.27 ms, flip angle = 70°, voxel size = 2.5 × 2.5 × 2.5 mm, FOV = 22.5 cm, cones = 143, shots = 1378, readout time = 9.0 ms, averages = 75, with a total scan time of ~1.5 h. A long scan time was chosen to produce images of very high SNR for the phantom study. A 2D GRE sequence was used to image 1H with the following scan parameters: TR = 1000 ms, TE = 3.28 ms, flip angle = 45°, voxel size = 1.0 × 1.0 × 3.0 mm, FOV = 250 × 125 × 3 mm, averages = 4, total scan time of ~8.5 min. All scans were acquired in both the sagittal and axial planes and repeated with both the composite array and trap coil. The final SNR values of the composite array were calculated using the root sum-of-squares from images of the individual coil elements normalized by their noise (19). For statistical analysis of the phantom studies, the FOV was segmented into three regions: (1) a hemispherical region expected to contain the breast tissue of interest (referred to as the volume of interest, or VOI), (2) a region of background noise with no signal-yielding tissue, and (3) a signal-yielding region outside the VOI. Signal homogeneity and SNR were evaluated across the VOI.

While resolution is determined by the point-spread-function of a sequence and not determined by a coil, a resolution phantom was scanned to demonstrate the feasibility of this setup. The resolution phantom was 3D printed with varying line thicknesses between 1.25 mm and 3.0 mm (Fig. 6a,b). The 3D print was inserted into a hemispherical mold that was filled with water, 12 mM CuSO$_4$ and 150 mM NaCl. Coronal 23Na images were obtained with 3D cones using the following scan parameters: TR/TE = 40/0.27 ms, flip angle = 70°, voxel size = 1.25 × 1.25 × 4 mm, FOV = 22.4 cm, cones = 80, shots = 1078, readout time = 8.2 ms, averages = 20, with a total scan time of ~20 min. A 3D GRE sequence was used to obtain coronal 1H images with the following scan parameters: TR = 15 ms, TE = 5.75 ms, flip angle = 25°, voxel size = 0.23 × 0.23 × 0.7 mm, FOV = 180 × 123 × 73 mm, averages = 1, total scan time of ~14 min.

Transmit flip angle (B_1) maps of the 1H transceive loops were obtained using the dual angle method (53) using a GRE sequence repeated in both the sagittal and axial planes, with scan parameters: TR = 1000 ms, TE = 3.28 ms, FOV = 250 × 125 × 3 mm, voxel size = 1.0 × 1.0 × 3.0 mm, flip angle = 45°/90°, averages = 4, total scan time = 17 min.

B_1 maps of the 23Na transmit coil were obtained using the phase sensitive method (54,55). Sodium B_1 mapping scan parameters were: TR = 100 ms, TE = 15 ms, FOV = 386 × 145 × 108 mm, resolution = 128 × 48 × 36, voxel size = 3.0 mm isotropic, averages = 30, readout bandwidth = 166 Hz/pixel, echo-planar imaging factor = 3, total scan time = 58 min. The high number of averages used for the 23Na phantom experiment was used to achieve high SNR for the comparisons.

Human Imaging Studies

Human imaging studies were conducted after informed consent and with approval of the local institutional review board. A fast-gradient spoiled sequence using the 3D cones k-space trajectory was used for 23Na imaging in the breast of a normal volunteer (18), with the following scan parameters: TR/TE = 40/0.27 ms, flip angle = 70°, voxel size = 1.25 × 1.25 × 4 mm, FOV = 22.4 cm, cones =
80, shots = 1078, readout time = 8.2 ms, averages = 20, with a total scan time of ~20 min. A standard \(^1\)H GRE acquisition was performed to compare \(^1\)H-SNR. The GRE scan parameters were: TR = 11 ms, TE = 4.7 ms, flip angle = 15°, voxel size = 0.90 × 0.90 × 1.2 mm, FOV = 172 × 172 × 88 mm, 1 average, with a total scan time of ~3 min. To generate water and fat images using 3-point Dixon, the same \(^1\)H GRE acquisition was performed at TE = 5.75 ms and TE = 6.8 ms. All scans were repeated with both the composite array and trap coil. Images were acquired in the sagittal plane. The volunteer was moved when switching coils but not between \(^23\)Na and \(^1\)H scans. The final images were combined using root sum-squares of the individual coil element magnitude images with normalized noise floors (19). The FOV was large enough so that the noise floors could be calculated using slices that contained no signal.

RESULTS

Phantom Studies

\(^{23}\)Na-SNR Performance

Within the VOI of the phantom, the composite array had a mean \(^{23}\)Na-SNR of 123 ± 43 and the trap coil had a mean \(^{23}\)Na-SNR of 29 ± 8. An image comparing the central sagittal slice shows an improvement in \(^{23}\)Na-SNR by a factor of 5 near the expected location of the nipple, and a factor of 3 or more across most of the remaining breast volume (Fig. 7). A histogram created from the voxels within the VOI (Fig. 7d) shows that while the spread of \(^{23}\)Na-SNR values is much larger using the composite array, the dramatic improvements in \(^{23}\)Na-SNR are also clearly evident.

The separate 1.25-mm-thick lines are detectable on the \(^{23}\)Na images using the resolution phantom (Fig. 6c).

\(^{23}\)Na Homogeneity

Flip angle maps for \(^{23}\)Na excitation using the \(^{23}\)Na transmit and receive loops are shown in Figure 8. Reasonable homogeneity is observed across the VOI, although some variation is observed, particularly in the center of the coil near the nipple and toward the edges of the breast.

\(^{1}\)H-SNR Performance

The composite array had a mean \(^{1}\)H-SNR of 725 ± 494 and the trap coil had a mean \(^{1}\)H-SNR of 530 ± 224. The \(^{1}\)H-SNR in the composite array relative to the trap coil
improved by roughly a factor of 2 near the 1H loops, although it decreased by 20% near the center of the breast phantom (Fig. 9a–c).

1H Homogeneity

The composite array had a mean 1H flip angle of $48\pm19^\circ$ and the trap coil had a mean 1H flip angle of $44\pm12^\circ$ in the signal-yielding region in the central sagittal slice. The composite array obtains adequate homogeneity in the VOI for GRE images. There is some transmit B_1 focusing near the center of the 23Na loops and transmit B_1 shielding where the 23Na loops overlap (Fig. 9e).

Human Imaging Studies

23Na-SNR Performance

Sodium SNR improvements similar to those seen in the phantom study were observed in vivo in a normal human volunteer using the composite array (Fig. 10a,c). The fibroglandular tissue in the central sagittal slices of the composite array had a mean 23Na-SNR of 30 ± 18 and the trap coil had a mean 23Na-SNR of 8 ± 3. Improved 23Na-SNR is evident with noticeably improved depiction of small anatomic features within the breast (Fig. 11a). The composite array obtains excellent 23Na-SNR over the entire VOI (Fig. 11a).

1H-SNR Performance

Both the trap coil and the composite array obtain good 1H images (Fig. 10b,d). The signal-yielding region of the breast in the central sagittal slices had a mean 1H-SNR of 32 ± 10 using the composite array and a mean 1H-SNR of 24 ± 7 using the trap coil. The in vivo 1H-SNR in the composite array was double that of the trap coil on the edges of the breast and similar throughout most of the breast.

DISCUSSION

The composite array obtains a 2–5× increase in 23Na-SNR, which is a substantial improvement over anything that has been obtained in the past by single channel coils used in many 23Na breast studies (4,5,40,41). A 2–5× increase in 23Na-SNR translates to a 4–25× decrease in scan time for a given resolution, which can make a dramatic impact on the use of 23Na-MRI, improving the clinical feasibility of breast 23Na-MRI. The in vivo sodium breast images show a level of detail and structure not previously achieved, demonstrating
imaging at a $1.25 \times 1.25 \times 4$ mm nominal voxel size at 3 T in a scan time of only 20 min.

The high 23Na-SNR images of the breast were obtained by using a receive array of small receive loops that are well decoupled from a large, homogeneous transmit coil during both transmit and receive. Although the Q_{ratio} values of the 23Na composite array receive loops ($Q_{\text{ratio}} = 1.5$) would typically be considered low (56), the loops were still very effective in improving 23Na-SNR.

Superimposing and intersecting the 1H loops with 23Na loops in this array design preserves the high SNR of the 23Na receive array while achieving acceptable 1H image quality. While the composite array has some 1H transmit inhomogeneities due to the presence of the 23Na receive array, the sensitive volume is reasonably homogeneous (Fig. 9e). Although not presented in this article, when the scanner’s body coil or a smaller 135 mm circular coil was used to image 1H with the 23Na receive array in place, the 1H images contained signal focusing and signal voids worse than those shown on the 1H-B_1 maps of the composite array. A larger 1H transmit array will not be more homogeneous, because most of the inhomogeneity arises from the shielding effects of the 23Na loops. A 1H ladder coil with more elements should also be investigated as this should improve 1H-SNR due to the smaller 1H elements. The quality of the 1H images produced by our current coil design may not be sufficient to replace a conventional 1H coil for routine breast

FIG. 8. (a) Axial, (b) sagittal, and (c) coronal sodium transmit flip angle maps of the central slices from the composite array.

FIG. 9. Proton SNR maps of the central sagittal slice using the (a) trap coil and (b) composite array. c: Ratio of the composite array to trap coil SNRs. d: Histogram of proton voxel SNRs obtained from the phantom comparing the trap coil (blue) and composite array (red). Flip angle maps of the (e) trap coil and (f) composite array.
MRI, but the 1H-SNR is currently sufficient for registration between 23Na and 1H images. A single coil capable of both 23Na and 1H examination with no sacrifice in 1H image quality compared with commercially available 1H coils is the ultimate goal of this work, and this will guide future refinements to the current coil prototype.

The coil has similar safety concerns and benefits when compared to other transceive coils used at 3 T, such as transceive birdcage coils that have high RF voltages relatively close to the subject. Following similar design principles for birdcage coils, the electronics are well insulated and are positioned at a reasonable distance from the subject. The increased flip angles for 1H near the 23Na loops suggests that only low flip angle 1H sequences should be used to avoid heating the subject. Future versions of the coil will address the increased RF deposition near the 23Na loops by either including 1H traps on the 23Na loops, or by using more 1H transceiver segments to reduce the RF focusing caused by the 23Na loops. The use of a transceiver array will result in less RF deposition into the body overall, due the relatively small size of the transceiver array when compared with the scanner’s body coil.

Further improvements to 23Na-MRI using the composite array are still possible. Some improvements include: shorter cables between the receive loops and preamplifiers, resulting in reduced cable interactions with the 1H signal; improving preamplifier decoupling; and fiberglass formers that conform better to different breast sizes and shapes. It is uncertain whether the decrease in the transmit 23Na-B_1 near the nipple results from the decoupling circuits (Fig. 8). If from the decoupling circuits, placing the decoupling circuits at any other location where less 23Na-SNR is obtained may not be desirable. Better 23Na image quality could likely be obtained using a more optimal multicoil image reconstruction with noise decorrelation (19,39).

FIG. 10. In vivo (a, c) sodium and (b, d) proton breast images of a normal volunteer obtained using the (a, b) trap coil and (c, d) composite array. All images were acquired with the same volunteer on the same day.

FIG. 11. Multiple slices of in vivo (a) sodium, (b) water, and (c) fat breast images of a normal volunteer obtained using the composite array. The (a) sodium images were obtained in a scan time of only 20 min. The (b) water and (c) fat images were obtained using 3-point Dixon.
Future work will explore whether higher 23Na resolution can improve detection and evaluation of breast cancer in vivo (6). The improvements in 23Na-SNR will allow better 23Na T$_1$ and T$_2$ measurements for the evaluation of lesions, although quantitation of sodium concentrations is still desirable. The experiments in this study did not demonstrate the accuracy with which quantitative measurements of 23Na concentration could be obtained. The low Q_{ratio} values of the 23Na loops suggest that the loops are relatively insensitive to changes in loading (56), so that field profiles obtained with a phantom may potentially be used for accurate quantification. If necessary, a 23Na transmit flip angle map could be acquired within a few minutes for transmit field correction (54). Receive field profiles could potentially be corrected using sensitivity encoding (SENSE) reconstruction techniques that use the central regions of k-space to estimate coil sensitivities (39,57,58).

The described breast coil is unilateral. However, implementation of a bilateral 23Na receive array for simultaneous imaging of both breasts would be relatively straightforward. Due to the small diameters of the 23Na loops, the separation between the left and right coil receive elements is expected to be sufficient to avoid any significant loss in performance of a bilateral design versus the demonstrated unilateral design. Bilateral sodium breast imaging is feasible without additional loss in scan time due to the large number of averages typically performed in 23Na imaging. Increasing the FOV has the same SNR advantage as signal averaging, so in any scenario in which signal averaging is needed, the FOV can be increased without a scan time penalty. For instance, doubling the imaging FOV and reducing the number of averages by a factor of 2 does not change scan time, resolution, or SNR efficiency.

CONCLUSIONS

This work has demonstrated a 2–5× increase in 23Na-SNR using a novel composite array coil design compared with a single-loop trap coil design, significantly improving breast 23Na-MRI image quality at 3 T. The coil demonstrates an array superposition technique that can improve decoupling between 1H and 23Na array coils, so that excellent 23Na and good 1H images can be obtained without repositioning the subject. The improved SNR of the 23Na composite array gives breast 23Na images of unprecedented quality in reasonable scan times. High quality 23Na images of the breast may improve the specificity of breast MRI for the detection and characterization of breast cancer.

ACKNOWLEDGMENTS

The breast support device was used courtesy of Allison Payne and Robb Merrill, NIH grant.

REFERENCES