Between 2% to 5% of all colon cancers arise in the setting of well-defined inherited syndromes, including Lynch syndrome, familial adenomatous polyposis, MUTYH-associated polyposis, and certain hamartomatous polyposis conditions. Each is associated with a high risk of colon cancer. In addition to the syndromes, up to one-third of colon cancers exhibit increased familial risk, likely related to inheritance. A number of less penetrant, but possibly more frequent susceptibility genes have been identified for this level of inheritance. Clarification of predisposing genes allows for accurate risk assessment and more precise screening approaches. This review examines the colon cancer syndromes, their genetics and management, and also the common familial colon cancers with current genetic advances and screening guidelines.

Keywords: Familial Colon Cancer; Lynch Syndrome; Hereditary Polyposis Conditions.

Of common malignancies, colorectal cancer (CRC) has one of the largest proportions of familial cases. Kindred and twin studies estimated that approximately 30% of all CRC cases are an inherited form of the disease. Approximately 5% of cases are associated with highly penetrant inherited mutations and clinical presentations that have been well-characterized. The etiologies of the remaining 20%–30% of inherited CRCs are not completely understood. They are likely to be caused by alterations in single genes that are less penetrant but more common than those associated with the well-characterized syndromes. Examples include common polymorphisms in genes that regulate metabolism or genes that are regulated by environmental or other genetic factors. Inherited CRCs are also likely to be caused by alterations in multiple susceptibility loci that have additive effects. A precise understanding of the genetics of inherited CRCs is important for identifying at-risk individuals, improving cancer surveillance and prevention strategies, and developing better diagnostic and therapeutic approaches.

We review the genetics, clinical features, diagnosis, and management of the well-described colon cancer syndromes. Identification of the genes involved with these syndromes has led to genetic testing for diagnosis and improved understanding of the molecular mechanisms of colon cancer. Studies of the less-penetrant but more common causes of familial and inherited colon cancers have led to recommendations for colon cancer screening. Furthermore, genetic study in this group is improving our understanding of colon cancer risk, pathogenesis, and prevention.

Inherited CRC Syndromes With Adenomatous Polyps

The syndromes of CRC are defined on the basis of clinical, pathological, and, more recently, genetic findings. Conditions that express adenomatous polyps include Lynch syndrome (also called hereditary nonpolyposis colorectal cancer), familial adenomatous polyposis (FAP), attenuated FAP, and MUTYH-associated polyposis (MAP). Hamartomatous polyps are the primary lesions in Peutz-Jeghers syndrome (PJS) and juvenile polyposis syndrome (JPS). Finally, hyperplastic polyposis (HPP) is an unusual condition that has a substantial cancer risk and must be distinguished from the other conditions. All of these conditions are inherited, autosomal-dominant disorders, except MAP, which is autosomal-recessive, and HPP, which is rarely inherited. Both attenuated FAP and

Abbreviations used in this paper: CRC, colorectal cancer; EpCAM, epithelial cell adhesion molecule; FAP, familial adenomatous polyposis; GI, gastrointestinal; HPP, hyperplastic polyposis; IHC, immunohistochemistry; JPS, juvenile polyposis syndrome; MAP, MUTYH-associated polyposis; MMR, mismatch repair; MSI-H, high microsatellite instability; PJS, Peutz-Jeghers syndrome; SNP, single nucleotide polymorphism; TGF-β, transforming growth factor-β.

© 2010 by the AGA Institute
0016-5085/10/$36.00
doi:10.1053/j.gastro.2010.01.054
MAP are associated with varying numbers of adenomas, so their phenotypes can be confused not only with each other, but also with Lynch syndrome, sporadic polyps, and other polyposis syndromes. Although clinical similarities do exist, each syndrome has distinct cancer risks, characteristic clinical features, and separate genetic etiologies. Diagnosis and management recommendations are based on these divergent features.

Lynch Syndrome

Individuals with Lynch syndrome are predisposed to various types of cancers, especially colon and endometrial (see Table 1). The syndrome accounts for 2%-4% of all CRCs. Although affected individuals can develop colonic adenomas with greater frequency than the general population, polyposis is rare. Lifetime CRC risk is estimated to be 50%-80%.

Colon cancers and polyps arise in Lynch syndrome at a younger age of onset and a more proximal location compared to sporadic neoplasms. Histologically, cancers are often poorly differentiated, mucinous, and have large numbers of tumor-infiltrating lymphocytes. They are also characterized by a high level of microsatellite instability (MSI-H), a feature of cancers that arise in the setting of Lynch syndrome.

<p>| Table 1. Characteristic Features of High-Risk Colorectal Cancer Conditions |</p>
<table>
<thead>
<tr>
<th>Condition: inheritance</th>
<th>Gene</th>
<th>Lifetime cancer risks</th>
<th>%</th>
<th>Nonmalignant features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonpolyposis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lynch syndrome: autosomal-dominant</td>
<td>hMLH1</td>
<td>Colon</td>
<td>50–80</td>
<td>Physical or nonmalignant features, besides keratoacanthomas and sebaceous adenomas/carcinomas, are rare.</td>
</tr>
<tr>
<td></td>
<td>hMLH2</td>
<td>Endometrium</td>
<td>40–60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hMSH6</td>
<td>Stomach</td>
<td>11–19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hPMS2</td>
<td>Ovary</td>
<td>9–12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EpCAM</td>
<td>Hepatobiliary tract</td>
<td>2–7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper urinary tract</td>
<td>4–5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pancreatic</td>
<td>3–4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small bowel</td>
<td>1–4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CNS (glioblastoma)</td>
<td>1–3</td>
<td></td>
</tr>
<tr>
<td>Adenomatous polyposis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Familial adenomatous polyposis: autosomal-dominant</td>
<td>APC</td>
<td>Colon</td>
<td>100</td>
<td>100s to 1000s of colorectal adenomas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duodenum/periampullary</td>
<td>4–12</td>
<td>Gastric fundic gland and duodenal adenomatous polyposis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stomach</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pancreas</td>
<td>2</td>
<td>CHRPE, epidermoid cysts, osteomas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thyroid</td>
<td>1–2</td>
<td>Dental abnormalities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liver (hepatoblastoma)</td>
<td>1–2</td>
<td>Desmoid tumors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CNS (medulloblastoma)</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Attenuated FAP (AFAP): autosomal-dominant</td>
<td>APC</td>
<td>Colon</td>
<td>70</td>
<td><100 colonic adenomas (range, 0–100s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duodenum/periampullary</td>
<td>4–12</td>
<td>Upper GI polyposis similar to FAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thyroid</td>
<td>1–2</td>
<td>Other non-malignant features are rare in AFAP</td>
</tr>
<tr>
<td>MUTYH-associated polyposis: autosomal recessive</td>
<td>MUTYH</td>
<td>Colon</td>
<td>80</td>
<td>Colonic phenotype similar to AFAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duodenum</td>
<td>4</td>
<td>Duodenal polyposis</td>
</tr>
<tr>
<td>Hamartomatous polyposis</td>
<td>STK11</td>
<td>Breast</td>
<td>54</td>
<td>Mucocutaneous pigmentation</td>
</tr>
<tr>
<td>Peutz-Jeghers syndrome: autosomal-dominant</td>
<td></td>
<td>Colon</td>
<td>39</td>
<td>GI hamartomatous (Peutz-Jeghers) polyps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pancreas</td>
<td>11–36</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stomach</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ovary<sup>b</sup></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lung</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Small bowel</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uterine/cervix<sup>c</sup></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Testicle<sup>d</sup></td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Juvenile polyposis syndrome: autosomal dominant</td>
<td>SMAD4</td>
<td>Colon</td>
<td>39</td>
<td>GI hamartomatous (juvenile) polyps</td>
</tr>
<tr>
<td></td>
<td>BMPR1A</td>
<td>Stomach, pancreas, and small bowel</td>
<td>21</td>
<td>Features of HHT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Congenital defects</td>
</tr>
<tr>
<td>Hyperplastic polyposis</td>
<td>Hyperplastic polyposis: inheritance unknown</td>
<td>?</td>
<td>Colon</td>
<td>>50</td>
</tr>
</tbody>
</table>

CHRPE, congenital hypertrophy of the retinal pigment epithelium; CNS, central nervous system; FAP, familial adenomatous polyposis; GI, gastrointestinal; HHT, hereditary hemorrhagic telangiectasia.

^aRisks associated with EpCAM mutations are not yet known.

^bSex cord tumors with annular tubules.

^cAdenoma malignum.

^dSertoli cell tumors.
defective DNA mismatch repair (MMR) genes. Of interest is that colon cancers with MSI-H overall have a better prognosis compared to those without MSI.6

Extracolonic Features

Endometrial cancer is the most common extracolonic malignancy associated with Lynch syndrome. The lifetime risk is 40\%-60\%, which is comparable to or even greater than the estimated risk for CRC in women with Lynch syndrome. Lynch syndrome is responsible for approximately 2\% of all endometrial cancers.7 Other cancers associated with Lynch syndrome are listed in Table 1 and include gastric, ovarian, biliary, urinary tract, small bowel, brain, and pancreatic.8,9 A number of these cancer risk estimates are based on studies predominately consisting of highly penetrant Lynch syndrome families. More recent studies suggest that the risk for various cancers is likely lower than previously reported.

Genetics

Lynch syndrome is the result of a germline mutation in a class of genes involved in DNA MMR, including \textit{hMSH2}, \textit{hMLH1}, \textit{hMSH6}, and \textit{hPMS2}. The MMR system is necessary for maintaining genomic fidelity by correcting single-base mismatches and insertion-deletion loops that form during DNA replication. Mutations in \textit{hMSH2} and \textit{hMLH1} account for the up to 90\% of Lynch syndrome cases; mutations in \textit{hMSH6} account for approximately 10\%, and mutations in \textit{hPMS2} are detected on rare occasions.8,10 Differences in cancer risks have been reported among the MMR genes, including \textit{hMSH6} where colon cancer risk may be slightly lower and endometrial cancer risk possibly higher compared to \textit{hMSH2} and \textit{hMLH1} carriers.11 The most striking difference is for \textit{hPMS2} mutation carriers, which have recently been shown to have a 15\%-20\% risk for CRC, 15\% for endometrial cancer, and 25\%-32\% for any Lynch syndrome-associated cancer to age 70 years.12 These risk estimates are substantially lower when compared to other MMR genes.

Recently, germline deletions in the epithelial cell adhesion molecule gene (EpCAM), also known as \textit{TACSTD1}, were found in a subset of families with Lynch syndrome.13,14 These families displayed a Lynch syndrome phenotype with early onset and/or multiple cancers, in addition to hMSH2-deficient colorectal tumors, although no MMR gene mutations were identified. Of interest was that promoter hypermethylation of \textit{hMSH2} in tumors was detected, which is an uncommon finding in CRCs. These Lynch syndrome families were subsequently found to have germline deletions in the 3’ region of \textit{EpCAM}, which resulted in EpCAM-hMSH2 fusion transcripts.13 One estimate suggests that these deletions account for 6.3\% of Lynch syndrome cases.15

Diagnosis

Several tools are available to assist clinical diagnosis of Lynch syndrome, including analyses of family

Table 2. Indicators for Evaluation of High-Risk Colorectal Cancer Conditions4

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
</table>
| CRC, colorectal cancer; GI, gastrointestinal; LS, Lynch syndrome; MSI-H, microsatellite instability high. | |}

4See also National Comprehensive Cancer Network Guidelines for evaluation algorithms of inherited syndromes (www.nccn.org).

5Tumor-infiltrating lymphocytes, Crohn-like lymphocytic reaction, mucinous or signet ring cell differentiation, or a medullary growth pattern.

6Endometrial, ovarian, gastric, small bowel, brain, hepatobiliary tract, upper uroepithelial, sebaceous gland, and pancreas cancer.

7Serrated polyps include hyperplastic polyps, sessile serrated polyps (also known as sessile serrated adenomas), traditional serrated adenomas, and mixed adenomas.

histories, tumor testing, mutation prediction models, and genetic testing.

It is important to obtain a detailed personal and family history. Specific factors indicate patients have a high-risk CRC condition (see Table 2) and should be referred for genetic counseling. The Amsterdam criteria I (see Table 3) were originally developed for research purposes to identify families likely to have Lynch syndrome. More than 50\% of families with Lynch syndrome, however, fail to meet these criteria. To increase sensitivity, the Amsterdam criteria II and the Bethesda guidelines were developed (see Table 3).

The Amsterdam criteria and revised Bethesda guidelines are used in clinical practice to identify individuals at risk for Lynch syndrome who require further evaluation. Commercial tests are available to analyze the distal portion of \textit{EpCAM} and the 4 clinically relevant MMR genes. One approach to identify patients with Lynch syndrome is to perform genetic testing when individuals meet the personal and/or family history criteria mentioned here. Because germline mutations in \textit{hMLH1} and \textit{hMSH2} account for the majority of cases, genetic testing typically starts with analysis of these genes. Limitations of this strategy include high costs and reduced sensitivity compared with other diagnostic approaches.

A second approach for identifying Lynch syndrome, which has shown to be cost-effective, is to perform tumor testing when any of the Bethesda guidelines are identified. Various tumor testing strategies exist, most of which begin with MSI and/or immunohistochemistry (IHC) analysis of colorectal tumors. Approximately 90\% of
A number of models have recently been developed to help facilitate the diagnosis of Lynch syndrome, including but not limited to PREMM(1,2), MMRpro, and MMRpredict. These models utilize personal and family history to estimate the probability that an individual carries a MMR gene mutation. Although these models have been validated in CRC cases, they also performed well in one study using endometrial cancer cases.

A fourth approach for identifying Lynch syndrome has recently been incorporated at a number of centers. In this approach all colorectal and/or endometrial cancers are screened for MMR deficiency, regardless of age of onset or family history with MSI and/or IHC analysis. This approach has revealed that the revised Bethesda guidelines still miss approximately 28% of Lynch syndrome cases. This reduced sensitivity for the revised Bethesda guidelines may be explained, in part, by the lower risk of CRC seen in hMLH1 and hPMS2 mutation carriers.

Management

It is important to identify individuals with Lynch syndrome because of the early onset and high penetrance of cancer and the demonstrated effectiveness of screening for this condition (Table 4). Surveillance decreases both the incidence of CRC and related deaths. After a median follow-up of 5 years in 178 individuals with Lynch syndrome, those undergoing regular screening colonoscopy had a lower CRC incidence (11%) and CRC mortality (2%) compared to those who declined surveillance (27% and 12%, respectively). Colonoscopies at 3-year intervals have been shown to decrease the risk of CRC by >50% and prevent CRC deaths. The reduction in CRC risk and death is expected to be even greater when screening intervals are reduced to every 1–2 years. Finally, long-term aspirin use has been shown to decrease CRC incidence in Lynch syndrome and may be recommended in the near future.

Screening colonoscopy in affected individuals should be initiated by 20–25 years of age and repeated every 1–2 years. Subtotal colectomy with ileorectal anastomosis is advised with the appearance of colon cancer. Annual rectal surveillance is indicated thereafter. Segmental resection can be considered if annual colonoscopy can be assured thereafter.

Prophylactic hysterectomy and bilateral salpingo-oophorectomy reduce the incidence of endometrial and ovarian cancer in patients with Lynch syndrome and should be discussed as an option with women after completion of childbearing. Screening for these malignancies is also used but is less effective. Annual screening starting at age 30 years followed by prophylactic surgery at age 40 years was shown to have the highest net benefit measured in quality-adjusted life-years. However, the incremental cost-effectiveness ratio was approximately $195,000 per quality-adjusted life-year compared with the next best strategy, which was prophylactic surgery without screen-
These findings highlight the need for improved screening measures during childbearing years. Although there are few evidence-based data regarding the efficacy of screening for other Lynch syndrome-associated tumors, including gastric, the National Comprehensive Cancer Network suggests several options to be considered in view of clinical need (see Table 4).

Table 4. Management Recommendations for High-Risk Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Cancer</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lynch syndrome</td>
<td>Colon</td>
<td>Colonoscopy, every 1–2 y, beginning at age 20–25 y</td>
</tr>
<tr>
<td></td>
<td>Endometrium/ovary</td>
<td>Consider prophylactic TAH/BSO after childbearing complete</td>
</tr>
<tr>
<td></td>
<td>Referral to specialist for consideration of gynecologic cancer screening</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper urinary tract</td>
<td>Consider annual urinalysis, beginning at age 30–35 y</td>
</tr>
<tr>
<td></td>
<td>Upper GI tract</td>
<td>Consider EGD* every 1–2 y, beginning at age 30–35 y</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>Annual physical examination that includes a review for symptoms suggestive of related cancers and a skin examination to look for sebaceous carcinoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>There are no data to support routine screening for other related cancers, but approaches may be considered after counseling about the risks and benefits of available approaches</td>
</tr>
<tr>
<td>Familial adenomatous polyposis</td>
<td>Colon</td>
<td>Colonoscopy every 1–2 y, starting at age 10–12 y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Screening can be delayed until the late teenage years in families with attenuated FAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prophylactic colectomy when polyps become unmanageable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If remaining rectum or ileal pouch, screen every 6 months to 2 y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper GI tract EGD* every 1–3 y starting at age 20–25 y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other Annual physical examination that includes examination of the thyroid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>There are no data to support routine screening for other related cancers, but approaches may be considered after counseling about the risks and benefits of available approaches</td>
</tr>
<tr>
<td>MUTYH-associated polyposis</td>
<td>Colon</td>
<td>Colonoscopy every 2–3 y, starting at age 25 y</td>
</tr>
<tr>
<td></td>
<td>Duodenum</td>
<td>Prophylactic colectomy when polyps become unmanageable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EGD* every 1–3 y, starting at age 20–25 y</td>
</tr>
<tr>
<td>Peutz-Jeghers syndrome</td>
<td>Colon</td>
<td>Colonoscopy every 2–3 y, starting at age 25 y</td>
</tr>
<tr>
<td></td>
<td>Breast</td>
<td>Annual mammogram and breast MRI beginning by age 25 y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biannual clinical breast exam beginning by age 25 y</td>
</tr>
<tr>
<td></td>
<td>Pancreas</td>
<td>MRCP and/or endoscopic ultrasound of the pancreas every 1–2 y beginning by age 30 y</td>
</tr>
<tr>
<td></td>
<td>Stomach/small bowel</td>
<td>EGD* and abdominal CT with oral contrast every 2–3 y, starting at age 10 y</td>
</tr>
<tr>
<td></td>
<td>Cervix/uterus/ovary</td>
<td>Annual pelvic examination, Pap smear and transvaginal ultrasound beginning at age 18 y</td>
</tr>
<tr>
<td></td>
<td>Testes</td>
<td>Annual testicular examination beginning at age 10 y and observation for feminizing changes</td>
</tr>
<tr>
<td>Juvenile polyposis syndrome</td>
<td>Colon</td>
<td>Colonoscopy every 2–3 y, starting at age 25 y</td>
</tr>
<tr>
<td></td>
<td>Stomach</td>
<td>Prophylactic colectomy when polyps become unmanageable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EGD* every 1–3 y, starting at age 25 y</td>
</tr>
<tr>
<td>Hyperplastic polyposis</td>
<td>Colon</td>
<td>Colonoscopy every 1–2 y, in affected individuals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prophylactic colectomy when polyps become unmanageable</td>
</tr>
<tr>
<td>EGD, esophagogastroduodenoscopy; FAP, familial adenomatous polyposis; GI, gastrointestinal; MRCP, magnetic resonance cholangiopancreatography; TAH/BSO, total abdominal hysterectomy and bilateral salpingo-oophorectomy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Include side-viewing examination.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Frequency depends on polyp burden.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FAP: Classic and Attenuated

FAP is the second-most common inherited CRC syndrome, with a prevalence of 1 in 10,000 individuals. Characteristic features of FAP include development of hundreds to thousands of colonic adenomas beginning in early adolescence, and inevitable CRC in untreated individuals. The average age of CRC diagnosis if untreated is 39 years; 7% develop CRC by age 21 and 95% by age 50. Attenuated FAP is a less-severe form of the disease, characterized by an average 69% lifetime risk of CRC, an average of approximately 30 colonic adenomatous polyps (range, 0–100+), tendency to develop proximal colonic neoplasms, and polyp and CRC development at a later age. FAP, attenuated FAP, and Gardner syndrome (FAP with epidermoid cysts, osteomas, dental anomalies, and/or desmoid tumors) all result from germ-line mutations in **APC** (Table 1).
Extracolonic Features

Upper gastrointestinal (GI) tract polyposis occurs frequently with FAP or attenuated FAP. Gastric fundic gland polyps are found in approximately 50% of affected individuals and can be profuse. Adenomatous polyps in the stomach usually develop, but are much less common than fundic gland polyps, and are usually in the antrum. Dysplastic changes in fundic gland polyps are common, but are of little concern unless the dysplasia is severe. The lifetime risk of gastric cancer is about 1%,26 Adenomatous polyps of the duodenum are observed in >50% of individuals and are commonly found in the second and third portions. Duodenal cancer is the second most common malignancy in FAP or attenuated FAP, with a lifetime risk of approximately 4%-12%. Additional cancers (see Table 1) also arise in FAP. Benign growths also occur including osteomas (most commonly found on the skull and mandible), congenital hypertrophy of the retinal pigment epithelium, epidermoid cysts, fibromas, dental abnormalities (unerupted teeth or congenital absence of teeth), and desmoids (found in approximately 10% of FAP patients). These findings are less common in attenuated FAP. These benign lesions are usually of little concern, except for desmoid tumors, which can result in significant morbidity and even mortality, usually by compression of intra-abdominal structures.

Diagnosis

A diagnosis of FAP is made when at least 100 colonic adenomas are identified, although individuals at younger ages with fewer polyps might also have FAP. The presence of extracolonic lesions can also contribute to the initial diagnosis. The identification of APC mutations in a proband confirms the diagnosis, allowing precise identification of other relatives who are at risk.

Attenuated FAP is suspected when ≥10, but <100 adenomas, are found in a person older than 40 or 50 years of age (see Table 2). A precise diagnosis is often difficult in a single patient; polyp numbers vary with this disorder; attenuated FAP can mimic typical FAP, MAP, or even sporadic polyp development. Examinations of multiple family members can often determine the phenotype. Genetic testing is useful in that specific APC mutations are associated with attenuated FAP. Attenuated FAP and MAP, respectively, account for 10% to 20% of persons with 10 to 100 adenomatous polyps who do not have early classic FAP. It is common not to find a genetic etiology in this group.

Genetics

FAP and attenuated FAP are caused by germline mutations in APC, which encodes a tumor suppressor that is part of the WNT signaling pathway. New or de novo APC mutations are responsible for approximately 25% of FAP cases. In addition, approximately 20% of individuals with an apparent de novo APC mutation have somatic mosaicism (when ≥2 cell lines in the same individual differ genetically).30

The location of the mutation within APC has been associated with the severity of colonic polyposis, the degree of cancer risk, and the presence and/or frequency of nonmalignant findings, including desmoids and congenital hypertrophy of the retinal pigment epithelium (genotype-phenotype correlations).31 Studies have failed to show a correlation between genotype and upper GI tumor development. Debate exists regarding the utility of basing management strategies on genotype-phenotype correlations.

Management

Individuals who are at risk for, or have a genetic diagnosis of, FAP should be examined by colonoscopy every 1–2 years, beginning at age 10–12 years (see Table 4). Once adenomatous polyps emerge, and annual follow-up colonoscopy is recommended until a decision is made to perform a colectomy. Colectomy should be considered when >20 adenomas develop, when adenomas >1 cm are found, or when advanced histology appears. Restorative proctocolectomy (also called total proctocolectomy) with ileal pouch anal anastomosis is recommended when large numbers of adenomas are found in the rectum. A 1–2-cm cuff of rectal mucosa is left just above the anus for air-liquid-solid discrimination. If adenomas are already present in that location, then mucosal stripping is done as part of the procedure. Some surgeons prefer to do mucosal stripping with all restorative proctocolectomy and ileal pouch anal anastomosis procedures.32 However, it is also common to preserve the rectum with ileorectal anastomosis if few or no rectal adenomas are present. Annual or more frequent endoscopic follow-up must be assured if any rectal tissue remains. If numerous adenomas appear, sulindac (and possibly celecoxib) can be used to effectively regress polyps, making surveillance easier. There are few data on the use of nonsteroidal anti-inflammatory drugs to delay surgery or as a primary treatment for FAP. Such use should be limited to investigative trials. Up to 33% of patients with a preserved rectum need completion proctectomy later because of diffuse polyposis.

Patients with attenuated FAP should always be screened by colonoscopy because of the frequency of proximal colonic polyps. The screening should be done every 1–2 years, beginning in the late teenage years. Approximately 33% of patients with attenuated FAP can be managed during the long-term with colonoscopy and polypectomy because of small polyp numbers. About 66% will eventually require colectomy, although colectomy with ileorectal anastomosis is virtually always done to spare the rectum. Annual postoperative surveillance is required for polyp ablation, but subsequent proctectomy is rarely needed.
Upper GI endoscopy, including side-viewing endoscopy, should be performed every 1–3 years for patients with FAP or attenuated FAP, followed by endoscopic ultrasound for suspicious lesions at the ampulla. This should begin around an age of 25–30 years. Polyp biopsy and/or removal should be done, depending on size and appearance. The Spigelman staging criteria for duodenal adenomatosis can assist in determining the appropriate interval for follow-up. Over time, ≥20% of patients will require therapeutic endoscopic or surgery to treat duodenal adenomas and adenomas at the duodenal papilla. Gastric fundic gland polyps should be sampled, especially if they are large or erythematous. Gastrectomy is rarely needed, and usually only if severe dysplasia appears. Annual physical examination and possibly thyroid ultrasound are also routinely offered to individuals affected with attenuated FAP or FAP, given the increased risk for thyroid cancer (see Tables 1 and 4).

MAP

MAP is characterized by the presence of adenomatous polyposis of the colorectum and an increased risk of CRC. MAP is caused by biallelic mutations in \textit{MUTYH} (also referred to as \textit{MYH}) (Table 1). The colonic phenotype of MAP mimics attenuated FAP, including a propensity for proximal colonic neoplasms. Colonic polyposis typically occurs by the time patients reach their 40s, although polyps and cancer can occur at earlier ages. Biallelic \textit{MUTYH} mutations have also been found in individuals with early onset CRC and few-to-no polyps.

Adenomatous polyps predominate in MAP, however, unlike attenuated FAP, hyperplastic polyps are common. In a small series of 17 MAP patients, 8 (47%) displayed hyperplastic polyps and sessile serrated polyps. Additionally, G:C to T:A transversions in \textit{KRAS} were identified in 51 of 73 (70%) hyperplastic or sessile serrated polyps in individuals with MAP, compared with only 7 of 41 (17%) in their sporadic counterparts. This evidence indicates an association between MAP and hyperplastic or sessile serrated polyps. Clearly, our understanding of the MAP phenotype and its pathway(s) to CRC is evolving.

Additional Features

A European study showed that gastric and duodenal polyps occurred in approximately 11% and 17% of patients, respectively, with an estimated lifetime risk of duodenal cancer of 4%. FAP-associated extracolonic features such as osteomas, desmoids, congenital hypertrophy of the retinal pigment epithelium, and thyroid cancer did not occur but an excess of ovarian, bladder, skin, sebaceous gland tumors, and possibly breast cancer was observed.

Genetics and Diagnosis

The \textit{MUTYH} gene product is part of the base-excision repair pathway, which is involved in defending against oxidative DNA damage. Functionally, \textit{MUTYH} helps prevent G:C to T:A transversions caused by oxidative stress to highly mutagenic DNA bases.

Clinical diagnostic criteria for MAP have not yet been fully established, but at present, the colonic phenotype may be considered similar to attenuated FAP. Genetic testing for MAP is warranted in individuals with ≥10 colorectal adenomas but without an identifiable mutation in \textit{APC}. Genetic testing strategies target the specific ethnic allelic frequencies of \textit{MUTYH} variants. A genetic diagnosis of MAP confirms the diagnosis and allows genetic testing in family members. Siblings of individuals with biallelic \textit{MUTYH} mutations have a 25% chance of having MAP. Therefore, unlike attenuated and classical FAP, parents and children of individuals with MAP are rarely affected but should be counseled about the risks.

Management

Patients with MAP often develop proximally located CRCs, so at-risk individuals should receive colonoscopic surveillance (see Table 4). Surveillance is typically initiated when patients are in their mid-20s or mid-30s. Subtotal colectomy is advised for patients who develop colon cancer and should also be considered when colonoscopic management becomes problematic or when polyps become large or exhibit high-grade dysplasia. Screening for upper-GI tract tumors is similar to that for FAP because the risk for duodenal cancer is comparable.

Hamartomatous Polyposis Conditions

PJS and JPS are hamartomatous polyposis conditions that are both associated with an increased risk for colorectal and other malignancies (Table 1). There are several other hamartomatous polyposis conditions that are very rare and confer little, if any, colon cancer risk. Cowden syndrome is one of these and it arises from mutations of \textit{PTEN}.

The characteristic gastrointestinal lesions in PJS are small bowel, histologically distinctive hamartomatous polyps (96% of PJS patients). Gastric and colonic Peutz-Jeghers polyps are found in approximately 25% and 30% of cases, respectively. GI symptoms first occur on average in the early teenage years and include small bowel obstruction, intussusceptions, and GI bleeding. The most consistent extracolonic feature of PJS is the characteristic mucocutaneous pigmentation, typically presenting in childhood on the lips, buccal mucosa, and periorbital area.

A clinical diagnosis of PJS can be made when an individual has ≥2 of the following features: ≥2 Peutz-Jeghers polyps of the small intestine; typical mucocutaneous hyperpigmentation; and a family history of PJS.

Individuals with PJS have an estimated 81% to 93% lifetime risk of cancer, including an almost 70% risk of GI cancer. Lifetime risk of breast cancer approaches 50%
and of pancreatic cancer is 11%–36%. Additional cancers are also common (see Table 1).

Unlike PJS, JPS does not typically have obvious physical findings that facilitate diagnosis. The key feature of JPS is multiple juvenile polyps, most prominently in the colon but also in the stomach, duodenum, and small bowel. The lifetime risk of CRC in individuals with JPS is estimated to be 39%. Gastric cancer risk approaches 21% in those with multiple gastric polyps. Small bowel and pancreatic cancers may also develop.

A diagnosis of JPS is considered for anyone who has at least 3 juvenile polypos of the colon, multiple juvenile polyps throughout the GI tract, or any number of juvenile polyps and a family history of the condition.

Congenital defects occur in approximately 15% of JPS cases. A subset of patients with JPS also has hereditary hemorrhagic telangiectasias. Such patients often have mucocutaneous telangiectasias, GI arteriovenous malformations, and pulmonary arteriovenous malformations.

Genetics

Germline mutations in **STK11** (also called **LKB1**) are the only known cause of PJS, whereas JPS is caused by mutations in either **SMAD4** or **BMPRIA**. Disease-associated mutations are identified in as many as 70% of patients with PJS, but in only 40% those with clinically defined JPS.

Certain features seen in JPS, such as gastric polyposis and hereditary hemorrhagic telangiectasias, are more common with **SMAD4** mutations than with **BMPRIA** and might guide genetic testing strategies. Individuals with a clinical diagnosis of JPS but without an identifiable mutation in **SMAD4** or **BMPRIA** could have another hamartomatous polyposis condition or an unidentified mutation. Patients with Cowden syndrome, for example, can present with multiple juvenile colonic polypos and therefore be misdiagnosed as having JPS.

Practice guidelines for the management of JPS and PJS have recently been reviewed by the National Comprehensive Cancer Network® and can be found at www.nccn.org (see Table 4). Patients should be referred to a specialized team, because of the rarity of these conditions, the complexities of screening diagnosis and management, and the limited data on the effectiveness of various screening modalities.

HPP

HPP is a rare condition characterized by multiple and/or large hyperplastic polyps of the colon. The etiology of HPP is unknown. The World Health Organization’s criteria for HPP include 30 cumulative hyperplastic polyps of any size distributed throughout the colon (the number 20 is now often used46); ≥5 hyperplastic polyps proximal to the sigmoid colon with at least two >10 mm in diameter; or at least 1 hyperplastic colonic polyp in an individual with a first-degree relative with HPP. Sessile serrated polyps (also called sessile serrated adenomas) have also been added to the polyp histologic type. Little is known about the etiology, natural history, and incidence of HPP.

In the patients without cancer, HPP is generally asymptomatic and often identified during screening colonoscopy. The characteristic diminutive polyps infrequently bleed and sessile lesions may be difficult to detect via standard white-light colonoscopy.

Cancer Risk and Pathogenesis

HPP exhibits an increased risk of CRC, which occurs on average in the 50s or 60s, although very early age of onset has been reported. Metachronous and synchronous cancers are frequently observed, and lesions have a tendency to form in the proximal colon.

The literature on HPP consists mainly of case reports and small case series, so ascertainment bias must be considered when these studies are used to estimate CRC risk. Jass49 reviewed all of the cases of HPP reported until 2006 and determined that 88 of 207 of these (43%) had CRC. However, the frequency of CRC was 69% in small case series and 37% in large case series, probably a consequence of ascertainment bias in the first group.49 The heterogeneity of HPP could also affect calculations of CRC incidence among people with HPP. Considerable individual variations have been reported in the type, size, location, and number of polyps and the frequency of CRCs. One recent study showed that the number of hyperplastic polyps and serrated adenomas was significantly associated with CRC incidence.

It is now widely accepted that a serrated neoplasia pathway exists in addition to the traditional adenoma–carcinoma sequence of CRCs.50 Accumulated somatic changes within sessile serrated polyps, such as activating **BRAF** mutations and widespread methylation of CpG islands (referred to as the CpG-island methylator phenotype), with or without MSI, are important events in this pathway to carcinoma development.51 Additional research is needed in order to determine if defects in the regulation of promoter methylation, lifestyle behaviors such as smoking, or other factors are involved in pathogenesis.

Familial cases of HPP have been reported, although these are rare.47 The reported frequency of patients with HPP that have a family history of CRC (not a family history of hyperplastic polyposis) varies from 0 to 63%.48 Evidence supporting the inheritance of HPP is weak, although both recessive and dominant transmission patterns have been proposed.52 Curiously, individuals with biallelic **MUTYH** mutations, on occasion, been shown to meet criteria for HPP.

Management

Although precise surveillance strategies have not been established, regular colonoscopy every 1–2 years
appears appropriate in view of the cancer risk and propensity for proximal colonic lesions (see Table 4). Chromoendoscopy and narrow-band imaging could possibly improve hyperplastic polyph detection rates. Tumors can arise from polyps that are <5 mm, so removal of only large polyps could be inadequate. Evidence indicates that sessile serrated polyps should be treated as adenomas, in terms of cancer risk. When polyps >5 mm cannot be cleared, or if advanced dysplasia is found, subtotal colectomy should be considered. It is difficult to know whether relatives of patients with HPP are at increased risk for colon cancer. Colonoscopic screening, starting at age 40 and repeated every 5 years, would be a reasonable recommendation for relatives until more information is known about familial risk.

Common Familial Colorectal Cancers

Inherited forms of CRC account for as much as 30% of all CRC cases. Several different categories of less-penetrant, but potentially more common, causes of susceptibility have become apparent, based on family history and population studies (Figure 1). These include high-risk familial, nonsyndromic colon cancers and common familial-risk colon cancers, which are defined by family history. Population studies have also identified genetic factors associated with increased risk for CRC that include low-penetrant susceptibility loci (identified in genome-wide association studies) and specific polymorphisms; no surveillance guidelines are presently given for these CRC risk factors. Interestingly, the low-penetrance susceptibility loci identified by genome-wide association studies have additive effects on CRC risk, whereas CRC risk associated with the common polymorphisms is affected by gene–gene and gene–environmental interactions. Gaining a better understanding of these factors will improve both the understanding of colon cancer genetic pathogenesis and development of genetic-based colon cancer screening guidelines.

High-Risk Familial, Nonsyndromic Colon Cancer

Population-based studies have led to estimates that 0.8% to 2.3% of all CRC cases meet the Amsterdam I or II criteria for Lynch syndrome. A subset of these “Amsterdam-positive” cases, estimated at 40% to 70%, do not have MMR deficiency and therefore have been termed familial colorectal cancer type X. Study of these kindreds has revealed that CRC risk is lower than in Lynch syndrome and that CRC diagnosis averages 10 years later. Additionally, tumors do not exhibit MSI, and there is no increased incidence of extracolonic malignancies. Surveillance recommendations are based on family history and are described here later. The yet-to-be identified susceptibility gene or genes for this “type X” are likely to be uncommon but sufficiently penetrant to give rise to the observed autosomal-dominant segregation patterns. Identification of the relevant genes will allow development of genetic testing and more precise surveillance strategies.

Common Familial Risk Colon Cancer

Individuals who have a first-degree relative with CRC diagnosed after age 50 years have a 2–3-fold increased risk for this malignancy. Population-based studies have demonstrated that approximately 20% of all CRC cases occur in a higher risk setting; CRC before age 50 or a first-degree relative pair with CRC. Furthermore, having one first-degree relative with CRC before age 45 years, or having two first-degree relatives affected with CRC confers a 3–6-fold CRC risk compared to the general population. Sibling pair and parent–child pair studies have identified chromosomal regions that could contain genes that confer this level of risk; these include 7q31, 9q22.33, 3q21-24, and 11q23, with some minor loci that have been identified in multiple studies. CRAC1 (also known as hereditary mixed polyposis syndrome) has a similar risk level and has been associated with colon cancer by linkage analysis in Ashkenazi Jewish families and in sibling pair studies. These reports support the paradigm that common familial CRCs arise from a number of different, lower-penetrance susceptibility genes than those associated with the well-defined but rare inherited syndromes. These intermediate penetrant genes...
likely constitute only a small portion of the colon cancer population. Otherwise they would be detected by genome-wide association studies, where commonly occurring but very low penetrant susceptibility loci are detected.65 Indeed the genetic loci identified through family linkage and affected relative pair studies do not usually overlap with the susceptibility loci identified in genome-wide studies (see Low-Penetrance Loci below).

Screening and Surveillance

As no specific genetic markers are presently available for common familial CRCs, screening and surveillance are based on family history. In view of the family risks given above, screening recommendations based on family history are as follows: (1) patients with a single first-degree relative older than age 60 years with colon cancer should receive standard, average-risk colon cancer screening, but starting at age 40 years; (2) patients who have 1 relative with CRC before 60 years or 2 first-degree relatives with CRC should be screened every 5 years by colonoscopy, starting at age 40 years, or at an age 10 years younger than the earliest case in the family; and (3) patients with only second- or third-degree relatives with CRC should receive average-risk screening.66 It is noted that these strategies are empirical, differ somewhat between health policy organizations, and may need to be adapted based on the severity of the individual’s family history.

These screening guidelines will evolve as more genes are identified that predispose to CRC. Until then, family history is the best indicator of risk levels and appropriate screening strategies.

Low-Penetrance Loci

A recent model constructed from a genome-wide association study data estimated that as many as 170 common but separate genetic variations could confer susceptibility to CRC.67 Other large genome-wide association and gene-specific association studies have associated only 10 specific loci with increased risk for CRC. These are estimated to account for only 6% of CRC cases.68 These loci were identified based on single nucleotide polymorphism (SNP) markers. The odds ratio for each individual SNP is very low, ranging from 1.10 to 1.26, indicating a minimal increase in risk for each. However, these low-risk loci have an additive effect. Co-inheritance of SNPs on 8q24, 11q23, and 18q21, for example, results in an overall odds ratio or risk of 2.6.68 Several of the 10 CRC-associated loci, including 8q24, 9p24, and 18q21, have also been identified in multiple analyses.69

One of the major challenges to genome-wide association studies, however, is that the variants identified at susceptibility loci are not “mutations” that would be predicted to change function or expression of the gene product. They might affect gene expression through non-coding changes or lead to linkage disequilibrium with other genes that affect CRC risk.67,70 Another challenge is that genome-wide association studies do not often detect moderate- or high-penetrant alleles that are uncommon in the population.65 These are best detected in family or sib-pair and parent–child pair studies.

Genetic Variants or Polymorphisms

Certain genetic variants or polymorphisms in a number of genes have been associated with increased colon cancer risk.71 The genes with CRC-associated variants include APC11307K; HRAS1-VNTR; MTHFR; those encoding the N-acetyl transferases 1 and 2 (NAT1, NAT2); and those encoding the glutathione-S transferases Mu (GSTM1), Theta (GSTT1), and Pi (GSTPI).72,73 The risks conferred by variants of these genes are modest, but their high frequency in the population could affect overall CRC incidence.

Polymorphisms that confer CRC risk are frequently reported; for example, some but not all diabetes-associated variants of TC7FL12 (transcription factor 7-like 2), which encodes a component of the WNT signaling pathway, are also associated with increased risk for colon cancer.74,75 Alleles of insulin-like growth factor–1 and insulin-like growth factor binding protein 3 were shown to modify risk in association with a number of lifestyle factors.76 The type I transforming growth factor–β (TGF-β) receptor gene variant TGFBR1*6A is a reported risk factor for CRC and was proposed to account for as much as 3% of all CRC cases.77 These findings are consistent with results from studies showing that Apc(Min/+)Tgfr1(+/−) mice (haploinsufficient for Apc and Tgfr1) develop 2-fold more intestinal tumors than the parent strain, Apc(Min/+).78 Furthermore, variants of SMAD7 (at 18q21) have been shown to affect CRC risk;79 the rs12953717 variant appears to modulate SMAD7 expression, which could affect TGF-β signaling.

These and other genetic variants also modify the expression of known colon cancer susceptibility genes, so gene–gene interactions are important determinants of risk. In many cases for these variants, gene–environment interactions increase risk.71 Polymorphisms or variants that influence colon cancer susceptibility are summarized in Table 5. Multiple polymorphisms or variants influence colon cancer susceptibility, but may differ in their affect depending on the genetic, environmental, or clinical context. These overlapping and interacting affects are illustrated in Figure 2 and will also be described next in several subcategories.

Variants and Well-Defined Inherited Colon Cancer Syndromes

Independent genetic factors have been described that modify the severity and penetrance of the high-risk CRC genes, such as those associated with Lynch syndrome and FAP. In a recent study, 2 non-coding SNPs that affect risk for CRC also modified risk among indi-
individuals with mutations that cause Lynch syndrome, with some differences between sexes. A variant of insulin-like growth factor-I appears to be responsible for a more severe phenotype of Lynch syndrome. Other reports showed that increased severity of Lynch syndrome was associated with variants of \(\text{HFE}\) (which also causes hereditary hemochromatosis) and genes that encode glutathione-S-transferases. Different variants of \(\text{NAT1}\) and \(\text{NAT2}\) were associated up to a 2-fold difference in polyp number among patients with FAP, whereas the APC-T1493T variant increased polyp formation to a lesser extent. Therefore, many polymorphisms by themselves confer either a small increase in risk or no risk at all unless they occur in combination with gene mutations known to cause one of the high-risk syndromes.

Variants of Known CRC Susceptibility Genes

Several studies have examined the possible role of variants or polymorphisms within \(\text{APC}\) that increase risk of CRC but do not cause the severe syndrome of FAP. Ash-

Table 5. Examples of Genetic Variants That Modify Colorectal Cancer and/or Polyp Risk

<table>
<thead>
<tr>
<th>Gene</th>
<th>Symbol</th>
<th>Locus</th>
<th>Ref</th>
<th>Associations and effects on colon cancer and polyp risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenomatous polyposis coli</td>
<td>APC I1307K</td>
<td>5q21</td>
<td>84,87</td>
<td>Moderate risk for adenomas</td>
</tr>
<tr>
<td></td>
<td>APC D1822V</td>
<td></td>
<td></td>
<td>Increases colon adenoma risk in smokers</td>
</tr>
<tr>
<td></td>
<td>APC T1493T</td>
<td></td>
<td></td>
<td>Modifies presentation of FAP</td>
</tr>
<tr>
<td>Colorectal-associated cancer 1</td>
<td>CRAC1/HMPS</td>
<td>15q13.3</td>
<td>63,64</td>
<td>Associated with some cases of hyperplastic polyposis and there are probable environmental modifier(s)</td>
</tr>
<tr>
<td>Cyclin D1</td>
<td>CCND1 P241P</td>
<td>11q13.3</td>
<td>91</td>
<td>Causes younger age on onset in Lynch syndrome; but decreased risk in sporadic cases with exposure to estrogen</td>
</tr>
<tr>
<td>Cytochrome P450 family 24 subfamily A</td>
<td>CYP24A1</td>
<td>20q13.2</td>
<td>92</td>
<td>Associated with increased site-specific CRC risk, with possible ethnicity influence</td>
</tr>
<tr>
<td>Cytochrome P450 family 24 subfamily B</td>
<td>CYP24B1</td>
<td>20q13.2</td>
<td>92</td>
<td>Alters proximal CRC risk when associated with UV-spectrum sun exposure</td>
</tr>
<tr>
<td>Glutathione S-transferase mu 1</td>
<td>GSTM1</td>
<td>1p13.3</td>
<td>83</td>
<td>Modifies presentation of Lynch syndrome, ethnic and smoking factors modulate population risk in null allele carriers</td>
</tr>
<tr>
<td>Glutathione S-transferase theta 1</td>
<td>GSTT1</td>
<td>22q11.23</td>
<td>83</td>
<td>Modifies presentation of Lynch syndrome, ethnic and smoking factors modulate population risk in null allele carriers</td>
</tr>
<tr>
<td>Glutathione S-transferase Pi</td>
<td>Gstp1 (mouse)</td>
<td>6p22.2</td>
<td>82</td>
<td>Modifies adenoma number and age-of-onset in Min mice</td>
</tr>
<tr>
<td>Hemochromatosis protein</td>
<td>HFE</td>
<td>12q23.2</td>
<td>81</td>
<td>Modifies presentation of Lynch syndrome, possibly interacting with diabetes</td>
</tr>
<tr>
<td>Insulin-like growth factor 1A</td>
<td>IGF-1</td>
<td>15q13.3</td>
<td>63,64</td>
<td>Associated with some cases of hyperplastic polyposis and there are probable environmental modifier(s)</td>
</tr>
<tr>
<td>Insulin-like growth factor binding protein-3</td>
<td>IGFBP-3</td>
<td>7p12.3</td>
<td>76</td>
<td>Modifies colon cancer risk interacting with diabetes</td>
</tr>
<tr>
<td>N-acetyltransferase 1</td>
<td>NAT1</td>
<td>8p22</td>
<td>84</td>
<td>Modifies presentation of FAP and affects sporadic cancer risk in association with certain environmental factors</td>
</tr>
<tr>
<td>N-acetyltransferase 2</td>
<td>NAT2</td>
<td>8p22</td>
<td>84</td>
<td>Modifies presentation of FAP and affects sporadic cancer risk in association with certain environmental factors</td>
</tr>
<tr>
<td>Ornithine decarboxylase 1</td>
<td>ODC</td>
<td>2p16.3</td>
<td>97</td>
<td>Modifies adenoma risk interacting with NSAID use</td>
</tr>
<tr>
<td>Selenoprotein P</td>
<td>SEPP1</td>
<td>5p12</td>
<td>95,96</td>
<td>Modifies adenoma risk interacting with certain dietary factors and smoking</td>
</tr>
<tr>
<td>Thioredoxin reductase 1</td>
<td>TXNRD1</td>
<td>12q23.3</td>
<td>95</td>
<td>Modifies adenoma risk interacting with certain dietary factors and smoking</td>
</tr>
<tr>
<td>Transcription factor 7-like 2 isoform 2</td>
<td>TCF7L2</td>
<td>10q25</td>
<td>74,75</td>
<td>Modifies CRC risk, possibly in association with diabetes</td>
</tr>
<tr>
<td>Transforming growth factor, beta receptor</td>
<td>TGFBR1</td>
<td>9q22.33</td>
<td>77,78</td>
<td>Modifies CRC risk in high-risk families, and in Min mice</td>
</tr>
<tr>
<td>Tumor protein 53</td>
<td>TP53</td>
<td>17p13.1</td>
<td>90</td>
<td>Causes Li–Fraumeni syndrome; certain alleles also modify sporadic site-specific colon cancer risk in a gender-dependent manner</td>
</tr>
</tbody>
</table>

NOTE. Data in this table and article refer to recent research studies, which require further study to justify clinical application. CRC, colorectal cancer; FAP, familial adenomatous polyposis; NSAID, nonsteroidal anti-inflammatory drug; UV, ultraviolet.

![Figure 2. Schematic representation of subsets of genetic variants that influence CRC and polyp phenotypes. Variants of some genes, and within overlapping groups of genes, may contribute to phenotype both in inherited and population CRC, depending on the genetic change, and other concomitant genetic and environmental patient factors.](image-url)
kenazi Jewish carriers of the APC-I1307K variant have been estimated to have a 2-fold increase in CRC risk, compared with the general population, as well as an increased risk for adenomas. Molecular studies have shown that this variant makes APC particularly susceptible to additional mutation, providing a mechanism for the increased cancer risk in carriers. Although controversial, the APC-D1822V variant seems to protect against CRC among postmenopausal females that receive hormone supplements.

Variants in MMR genes have recently been reported to alter colon cancer risk but not cause Lynch syndrome, including variants of *hMSH6* and *hMLH1* that increase or decrease rectal and colon cancer risk in Czech populations. Monoallelic *MUTYH* mutations have also been shown to increase risk for CRC, although the significance is modest.

Interactions with Environment Factors

The differential effects of some gene variants on CRC risk depend on environmental and other genetic factors (see Figure 2). The R72P variant of *TP53* has been associated with increased risk for a number of tumors, including adenomas and colon cancer, but only when the analysis was stratified by gender, location of lesion, and hormonal effects. Furthermore, the synonymous P241P analysis was stratified by gender, location of lesion, and including adenomas and colon cancer, but only when the associated with increased risk for a number of tumors, estimates of individual alleles to CRC and polyp phenotypes.

Modeling the Additive Risk of Multiple Variants

The CRC risk conferred by some SNPs might be recessive (only affect risk in individuals that are homozygous for the SNP) or due to linkage disequilibrium with other SNPs. However, searches have not identified these types of SNPs. Although data for co-inheritance of both common and rare variants at each locus were analyzed, it is possible that functional recessive variants are too rare to be detected in genome-wide association studies. A directed approach to examine the effects of coding SNPs on CRC risk revealed the greatest effects for rare SNPs with expected deleterious effects, suggesting that natural selection has removed most moderately and highly penetrant SNPs from the population.

These results suggest a model whereby combinations of common variants could account for the approximate 30% of CRC cases that appear to be familial; any variant alone is not highly penetrant or its effect inherited in a Mendelian manner—their individual effects are “subclinical.” These types of variants could include polymorphisms in genes described here or even in genes that are associated with cancer syndromes, such as those in *APC*. However, when specific variants are co-inherited with one or more of these variants, cancer risk increases. Such SNP-SNP interactions have been proposed and modeled for cases where each SNP alone contributes some level of risk.

Specific SNPs within *SEPP1* (selenoprotein P) and *TXNRD1* (thioredoxin reductase 1) have recently been reported to modify the risk for adenomas. Environmental interactions have also been reported; dietary selenium might reduce the risk of advanced colorectal adenomas, especially among recent smokers. Furthermore, SNPs within *ODC* (ornithine decarboxylase) whose product regulates polyamine expression have been reported to affect colon cancer risk. The interaction observed between *ODC* variants, nonsteroidal anti-inflammatory drug therapy, and colorectal adenoma formation and regression reveals the multifactorial nature of colon cancer risk. Opportunities for therapeutic interventions that capitalize on these interactions, such as with combinations of drugs, are under investigation.

As progress has been made in elucidating the contribution of individual alleles to CRC and polypheno-types, it has become increasingly clear that many genes and alleles contribute differently in different contexts. Gene–gene and gene–environment interactions are common in CRC susceptibility and may also differ depending on the underlying clinical, environmental, or genetic setting. Figure 2 uses a Venn diagram approach to highlight these converging connections and to capture the multiple and overlapping contributions individual genes make to CRC risk and polyp phenotypes.

Conclusion

Analysis of CRC risk needs to be included in mainstream clinical practice. A detailed analysis of family history is a fundamental component of this process; it is not only important for identifying patients that are at high risk for CRC (Table 2) and should receive genetic counseling, but also essential for identifying individuals with moderate risk that should receive more aggressive screening. Genetic features associated with moderate risk of CRC susceptibility will in the future expand risk estimates and screening strategies beyond information collected from family histories. Genetic testing is now available for most hereditary CRC syndromes and can be used to confirm suspected diagnosis, to clarify risks of extra-
colonic cancers in affected individuals, and to identify relatives who are also at risk. Although CRC risk is increased in all of the syndromes reviewed, most also have significant risk of developing extracolonic cancer; these must be taken into account in determining medical management strategies. Diagnostic genomic applications are also evolving and will be increasingly integrated into patient care. The astute clinician will therefore need to stay abreast of genetic developments relative to CRC.

References

Received November 12, 2009. Accepted January 11, 2010.

Reprint requests
Address requests for reprints to: Randall W. Burt, MD, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Room S164, Salt Lake City, UT 84112-5550. e-mail: randall.burt@hci.utah.edu; fax (801) 581-3389.

Conflicts of interest
The authors disclose the following: Dr Burt is a consultant for Myriad Genetics and Archimedes, Inc. The remaining authors disclose no conflicts.

Funding
This research was supported by National Cancer Institute grants P01-CA073992 (RWB), R01-CA040641 (RWB) and by the Huntsman Cancer Foundation.