The Male-Female Health-Survival Paradox and Sex Differences in Cohort Life Expectancy in Utah, Denmark and Sweden 1850-1910

Rune Lindahl-Jacobsen1 [Associate professor], Heidi A. Hanson2,3 [Doctoral Candidate, Research Associate], Anna Oksuzyan1 [Post doc], Geraldine P. Mineau3,6 [Associate Director, Utah Population Database, Research Professor], Kaare Christensen1,4 [Professor], and Ken R. Smith3,5 [Director, Utah Population Database, Professor]

1Danish Aging Research Unit, Epidemiology, University of Southern Denmark, J.B. Winsløws Vej 9B, DK-5000 Odense C, Denmark.
2Department of Sociology, University of Utah, Salt Lake City, UT 84112 USA
3Population Sciences, Huntsman Cancer Institute, University of Utah, 675 Arapeen, Suite 200, Salt Lake City, Utah 84112-0080, United States.
4Department of Clinical Genetics and Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr Boulevard 29, 5000 Odense C, Denmark.
5Department of Family and Consumer Studies, University of Utah, 225 S. 1400 E. Rm 228, Salt Lake City, Utah 84112-0080, United States.
6Department of Oncological Sciences, University of Utah, Salt Lake City, Utah

Abstract

Purpose—In Utah, prevalence of unhealthy male risk behaviours are lower than in most other male populations while women experience higher mortality risk due to higher fertility rates. Therefore, we hypothesize that the Utah sex differential in mortality would be small and less than in Sweden and Denmark.

Methods—Life tables from Utah, Denmark and Sweden, were used to calculate cohort life expectancies for men and women born 1850-1910.

Results—The sex difference in cohort life expectancy was similar or larger in Utah when compared to Denmark and Sweden. The change over time in the sex differences in cohort life expectancy was approximately two years smaller for active Mormons in Utah than for other groups suggesting lifestyle as an important component for the overall change seen in cohort life expectancy. Sex differences in cohort life expectancy at age 50 were similar for individuals actively affiliated with the Church of Jesus Christ of Latter-day Saints and for Denmark and Sweden.

Conclusions—The hypothesis that a smaller sex difference in cohort life expectancies in Utah would be detected in relation to Denmark and Sweden was not supported. In Utah the male-female
differences in life expectancy remain substantial pointing towards biological mechanisms, or other unmeasured risk factors.

Keywords
Life expectancy; lifestyle; religion; immigrants

Introduction
The gender gap in survival has increased through the first three quarters of the 20th century in most Western countries (1-3) and today the sex differential in mortality is in favour of women throughout the World (4). The reasons that males die younger than females stem from constitutional— biological-genetic, and external—environmental-behavioural-social-cultural factors (5). Several accepted biological mechanisms to explain these differences are based on hormonal, autoimmune and genetic explanations (6). For example, it has been suggested that oestrogen could be protective due to its effect on serum lipids and its likely protective influences on cardiovascular diseases in females (7). The fact that males may experience a greater susceptibility to infections has led to the development of the immunocompetence hypothesis which states that there are significant suppression effects of testosterone on immunity (8). The X-chromosome hypothesis states that the lack of a second X chromosome among males increases their mortality in relation to females (9).

Behavioural factors have also been proposed to explain female–male differences in mortality (3) with risk-taking behaviours occurring more frequently among men including cigarette smoking and alcohol consumption, both of which elevate their risk of several serious diseases where men are more adversely affected than women (10). Cigarette smoking is thought to be the largest identifiable factor in explaining an increasing sex gap in mortality, but it is well known that cigarette smoking alone cannot explain the temporal sex difference in mortality. In particular, a sex difference in survival persists among never-smokers (11-13).

In an effort to further consider the universality of the female advantage in survival, we introduce into the analysis a unique population, the state of Utah, which has characteristics that suggest that it may have a smaller survival gender differential. Data regarding survival in Utah are derived from the Utah Population Database (UPDB). The UPDB is a comprehensive health research database containing linked demographic, medical, and genealogical data spanning the Utah population from the last two centuries (14). The medical data held within UPDB is extensive but given the historic period under investigation that predates the establishment of vital record keeping, fertility and mortality data are drawn from vast genealogical records. The genealogical data on more than 1.6 million individuals comprises families who experienced demographic events (birth, marriage, death) as migrants to frontier Utah and their descendants. Previous studies have used this in search for causes for cancer (15-18), effects of air pollutants on respiratory health (19), early life conditions influence on later mortality (20), risk for cardiovascular diseases (21), and asthma (22) and overall mortality patterns. The UPDB comprises data on families with and without an affiliation to the Church of Jesus Christ of Latter-day Saints. Active Mormons may experience survival benefits because they are more likely to abstain from alcohol and tobacco, they fast once a month, as well as participate in church and related social activities than other Utah residents (23). An additional characteristic of this population is its historically high fertility rates (24, 25), a feature that has been shown to adversely affect survival in this and other populations, primarily for women (26, 27). Such studies of specific religious groups have previously proven useful for understanding sex differentials in mortality (28-30).
Here we hypothesize that the Utah male-female survival difference is among the lowest observed and smaller than that in Sweden and Denmark. This hypothesis is based on the fact that many residents in Utah are active in the Mormon church, whose members have healthier life styles (e.g., proscription from alcohol and tobacco), especially relevant for men and elevated fertility and associated maternal mortality risks (24). These behaviours were common among members of the Church during the early settlement years though not enforced until the 1860s (31) and institutionalized in 1906 with the Word of Wisom (32, 33). We anticipate that the female longevity advantage would grow with time in Utah as their elevated fertility declined during the demographic transition. Denmark and Sweden serve as appropriate comparison countries because many descendants of both nations were widely represented among the early migrants to Utah and because these countries have high-quality cohort mortality data spanning the historic years (birth cohorts 1850-1910) in question. In the 1850's, Mormon converts began to emigrate from Denmark with the Swedish migration beginning somewhat later. Mulder (1957: 107), in his study of Scandinavian migration, reports that between 1850 and 1905 22,653 “members of record” emigrated to Utah, with 56 percent Danish, about one-third Swedish and 11 percent Norwegian (34).

Methodology

The population in Utah grew rapidly during the mid and late 19th century (figure 1.a.). The first pioneers arrived in 1847 and the population grew rapidly as a large number of migrants from the Midwest in the US, Europe, and Canada entered the state during the next few decades (25). The majority of the native-born population in Utah during this time period had some association with the Church; however both non-Mormons and inactive Mormons became an increasingly larger proportion of the population over time (Figure 1). The early birth cohorts were largely descendants of American, English and Scandinavian founders. The birth cohorts selected for analysis comprised descendants from American and other nationalities (82.7%, with birth cohort-specific proportions ranging from 74.6% to 99.4%), Sweden (4.4%, ranging from 0.5% to 18.7%), and Denmark (12.8%, ranging from 0.01% to 6.7%) with each cohort having a larger proportion of Swedish and Danish descendants over time (figure 1.b).

Utah cohort life tables were constructed from UPDB data. Individuals were required to be born in Utah between 1850 and 1910, link to a genealogical record because this signifies more complete information, and have a known death or follow-up date, yielding 339,945 individual records.

UPDB contains data on both Mormons and non-Mormons. Accordingly, pooled (all ages, all level of religious involvement) life tables were constructed by Church activity level: active, inactive, and those not connected to the Church. Religious affiliation is based on baptism and endowment dates reported on family history records. Individuals are typically baptised into the Church at age eight (later if they join as adults). Therefore, if an individual died before age eight their mother’s status within the Church was used as a proxy. Posthumous baptisms are not considered in this analysis. Individuals with an endowment date have pledged to live their lives in accordance with the doctrine of the Church and are considered active followers. Since endowments occur when an individual is an adult, for this analysis active Mormons are defined as those with an endowment date before age 40. Individuals baptised but not endowed were considered inactive followers of the Church. Those lacking both a baptism and an endowment date were considered non-followers. This yielded 172,227 active Mormons, 95,183 inactive Mormons, and 72,535 individuals not associated with the Church.
In an effort to make direct connections between Denmark and Sweden and Utah, life tables are estimated for Utah that take advantage of Danish and Swedish 19th century converts to the Church. The Utah portion of the analyses is restricted to the descendants from Denmark and Sweden who are present in UPDB, including Mormons and non-Mormons. The international migrants themselves who appear in the UPDB were excluded to avoid introducing a health migrant effect – their Utah-born progeny and subsequent descendants are the focus of the analysis.

Genealogical records of the descendants of Utah pioneers are linked to construct multi-generational pedigrees that represent a diverse population comprising both American and European converts to the Church and their descendants (25). The largest proportion of European converts of the nineteenth century were from England and Wales (25); however, a substantial proportion were native to Sweden and Denmark. To construct the life tables for Swedish and Danish descendants born in Utah, founders were identified by place of birth and both mother and father were required to be born in their respective countries. All descendants of founding couples meeting the aforementioned criteria were used to estimate life expectancies for each sub-population. Utah natives who were descendants of Swedish and Danish founders numbered 39,427 and 13,320, respectively.

Life expectancies at birth and age 50 were constructed based on cohort life tables. An abridged cohort life table was constructed for five-year periods beginning in 1850. All life table estimates were constructed using Mortpak for Windows version 4.1 (35). Mortpak derives the life table values using the Greville method (36) which assumes that age-specific death rates are log-linearly related to age. To complete the life table, \(nq_x \) values are extrapolated until no survivors remain, by fitting a Makeham function through the last six \(nq_x/(l - nq_x) \) values available.

Cohort life table data for Denmark and Sweden in the period 1850-1910 was retrieved from the Human Mortality Database (37). Both populations have a tradition for capturing high quality data on population counts and deaths (see documentation in the Human Mortality Database (37)). In Denmark, the National Statistical Office was founded in 1850 and censuses were conducted nationwide approximately every 5 years (37). In Sweden, each parish has kept a complete and continually updated register of its population for more than 300 years (37) and the quality of the data on population counts and deaths are of very high quality from 1861 onward (37). For each subpopulation, cohort life expectancies at age 0 and at age 50 were calculated using the formula (38):

\[
e_x^0 = \frac{T_x}{l_x}
\]

where \(l_x \) is the number alive at age \(x \) and

\[
T_x = \sum_{a=x_0}^{\infty} L_a
\]

where \(L_a \) are the person-years lived between ages \(a \) to \(n \) and \(T_x \) represents the total number of person-years lived by the cohort from age \(x \) until all members of the cohort have died.

The reasons for examining cohort life expectancies at age 50 are twofold: to avoid the direct mortality effects of childbearing in women and to permit comparisons that are based on...
religious affiliations that are appropriately measured in adulthood. For the small sample populations (i.e. descendants by parental countries of origin) 95% confidence limits was calculated using the methods suggested by Andreev and Shkolnikov 2010 (39)

Results

The overall cohort life expectancy e_0 increased from 1850 to 1910 for Utah, Sweden and Denmark for both sexes (Figure 2.a-2.c) and the sex differential in life expectancies was in favour of women for all populations. The early cohorts in Utah (i.e. born 1850-1855) had higher cohort life expectancy than those born 1860-1880 (Figure 2.a). For these early Utah cohorts, the sex difference in cohort life expectancy was small when compared to Sweden and Denmark (Figure 2.d). These lower Utah sex differentials disappeared for cohorts born around 1860. Subsequent to that the birth cohorts of Utah had larger sex differentials in life expectancies than Sweden and Denmark (Figure 2.d).

The cohort life expectancy of Danish and Swedish descendants was generally lower, yet followed a similar trend to that of the rest of the general Utah population (Figure 3.a-3.b). There is more variation in cohort life expectancy of Swedish descendants compared to the Danish and general Utah population estimates, however fluctuating estimates in the early cohorts may be due to small numbers. It is noteworthy that among Swedish descendants, there are selected historical periods where life expectancy is higher for males than females, suggestive of important environmental shocks that affect genders differently.

When further dividing the Utah population into sub-populations based upon religious activity, we found that inactive individuals and those unaffiliated with the Church had the lowest cohort life expectancy at age 50 for all cohorts and for both sexes (Figure 4.a). For men, active members of the Church had 2-4 years higher cohort life expectancy at age 50 compared to men in the other two activity categories (Figure 4.a). Women actively participating in church activities had a generally higher cohort life expectancy at age 50 when compared to the other two categories; however these differences were smaller than those reported for men. Also, in 1865 inactive females had a slightly higher cohort life expectancy at age 50 than active followers and by 1905 women not affiliated with the Church had higher cohort life expectancy at age 50 than individuals actively affiliated with the Church (Figure 4.a). The larger gender advantage of those less attached to the Church may reflect the higher mortality risks (past age 50 when the effects continue to endure) associated with elevated fertility of active Mormons.

For Denmark and Sweden, the patterns were very similar with a smaller difference in cohort life expectancy at age 50 for early cohorts and an increasing difference with consecutive cohorts (Figure 4.b). The sex difference in cohort life expectancy at age 50 was very similar for active Mormons and for Denmark and Sweden (Figure 4.c). Both non- Mormons and inactive Mormons had a sex difference in cohort life expectancy at age 50 that was 2-4 years higher than active Mormons (Figure 4.c). The change from 1850 to 1910 in the sex difference in cohort life expectancies was approximately four years for non-Mormons and inactive Mormons groups and for active Mormons the change was approximately two years (Figure 4.c).

Discussion

Based on unique data from the Utah Population Database, we did not find consistent support for our initial hypothesis that the sex differential mortality would be smaller in Utah when compared to Denmark and Sweden. This hypothesis was motivated by our expectation that a lower prevalence of smoking and alcohol consumption among men in Utah and a larger
burden of childbearing among women in Utah would narrow the difference in life expectancy. The sex difference in cohort life expectancy was larger in Utah except, importantly, during the early frontier settlement era (1850-70) that were distinguished by a series of food shortages and hardships associated with migration and vagaries of establishing communities (24). The smaller sex differences may also be the result of strong mortality selection leaving a more robust set of descendants where males have survival comparable to females.

The sex difference in life expectancy of active followers of the Church was slightly higher than that of Denmark and Sweden, with the exception of the early and later cohorts. The studied cohorts would have been the most exposed to tobacco use. The apparent crossover in mortality by sex for active followers and the trajectories for Sweden and Denmark may be associated with the lower smoking rates among active members over time as well as the declining fertility rates. These findings also suggest that biological and possibly other unmeasured social and cultural factors related to health behaviours may have a major influence on the sex differential in life expectancy. The fact that descendants of Danish and Swedish immigrants to Utah had similar cohort life expectancies as the rest of the Utah population further suggests that factors leading to larger sex differences in Utah may be found in differences in the cultural and social setting in Denmark and Sweden. Variation in the sex differences by geography may be due to differences in the diffusion of risky behaviours, different economic and political contexts, cultural differences that influence dietary patterns in men and women, fertility preferences, and the interaction between environmental and genetic effects.

Biological factors could interact with environmental differences leading to variation in sex differences in life expectancy between regions. Even though we failed to find a smaller overall cohort life expectancy in Utah we do find that behaviours may likely play a major role in explaining the change in the sex differential seen in cohort life expectancy in Utah. The increasing sex difference in cohort life expectancy from 1850 to 1910 was approximately two years smaller for active Mormons than for non-Mormons or inactive Mormons, suggesting behavioural factors as an important component for the overall change. Proscriptions related to alcohol and tobacco use among active Mormons was possibly reflected in the observed higher cohort life expectancies for both sexes. This effect varied by sex where non-Mormons, inactive Mormons and Mormon women were more similar in their cohort life expectancies at age 50 than comparable men, with Mormon men having a much larger benefit compared to other men in Utah.

Interestingly, the sex differential in cohort life expectancy in Utah increased with consecutive cohorts from 1850 to 1910 in favour of women. This is well in line with the findings that there remains a sex difference in survival among never-smokers (11, 12, 40), given that smoking is thought to be the most important lifestyle factor underlying the sex differential in mortality. The findings warrant future research aimed at explaining gender differences by cause of death.

In concordance with studies addressing the “healthy immigrant effect” (41, 42), we find higher cohort life expectancies of Swedish and Danish immigrants in Utah when compared to that of their native countries. The finding that the sex differential in cohort life expectancy is smallest in Utah during the frontier era (i.e. persons born 1850-1870) in relation to persons born at the same time in Sweden and Denmark suggests that special factors act on these generations of 19th century pioneers on sex differentials in mortality and life expectancy. These differences point to the potential mortality selection forces that create the health migrant effect.
The observation that all three religious groups were more similar for women than men suggests that the limited consumption of alcohol and tobacco among women will serve to limit differences in life expectancies (i.e., active Mormon women are more like non-Mormon women with respect to alcohol and tobacco use, a situation not reflected among men). This observation corresponds well with the suggestion that smoking is a principal factor behind the observed change in the pattern of sex mortality differences in United States (13, 40) and that smoking became increasingly socially acceptable among women in the US from approximately the 1920s (43). It is worth noting that generally Mormon women have more favourable life expectancies but these advantages may be attenuated because of their higher (and for many years, risky) fertility.

We are aware of some limitations in the present study. The assumption that active Mormons have a healthy lifestyle and that this is the cause behind the differences observed in cohort life expectancies in this study may not be true universally and not the case at the individual level. However, when data are lacking on lifestyle at the individual level and a strong association with a healthy lifestyle is present in a specific group it is a reasonable assumption. The association between religious activity and healthy lifestyle is supported by a 1980 study in Utah which found that about 40% of non-Mormons were regular smokers while 10% of the Mormon population did (21). Also, studies at the individual level have found that the major reason for the lower risk of cancer between Mormons and non-Mormons is smoking for men and smoking and reproductive behaviours for women, further supporting the link between religious activity and lifestyle behaviours (15).

In conclusion, we did not universally confirm our initial hypothesis of smaller sex differences in cohort life expectancy in Utah when compared to Denmark and Sweden as sex differential in cohort life expectancy overall and irrespectively of specific religious groups was higher in Utah. Our study suggests that proscriptions related to tobacco and alcohol consumption may have been an important factor for the changes seen in sex differentials in cohort life expectancies. However, our results suggest that lifestyle factors alone were not sufficient to explain the total differences found in life expectancies for consecutive birth cohorts in Utah which proposes that other factors such as biological, gene-environment interaction or unmeasured/unrecognised factors should be search for.

Acknowledgments

We wish to thank the Huntsman Cancer Foundation for database support provided to the Pedigree and Population Resource of the Huntsman Cancer Institute (HCI), University of Utah. We also thank Alison Fraser and Diana Lane Reed at the HCI for valuable assistance in managing the data. Partial support for all datasets within the UPDB was provided by HCI at the University of Utah and the HCI Cancer Centre Support Grant, P30 CA42014 from National Cancer Institute. This work was supported by KRS, HAH, and GPM by the National Institutes of Health grant [AG022095] and by research Grants from the National Institute on Aging (NIA-P01-AG031719), and the VELUX Foundation.

References

8. Crimmins, EM.; Finch, CE. Infection, inflammation, height, and longevity. Proceedings of the National Academy of Sciences of the United States of America; 2006; p. 498-503.Epub 2006/01/03

37. Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany); 2012. Available from: http://www.mortality.org

39. Andreev ME, Shkolnikov VM. Spreadsheet for calculation of confidence limits for any life table or healthy-life table quantity. MPIDR TECHNICAL REPORT 2010-005 JUNE 2010. 2010

Figure 1. Number of births for birth cohorts by status within the Church of Jesus Christ of Latter-day Saints (a) and nationality (b)
Figure 2.
Cohort life expectancy in Utah (a), Sweden (b), Denmark (c) and the sex differences in each population (d).
Figure 3.
Cohort life expectancy by sex for Danish descendants, Swedish descendants and the Utah population. Vertical lines represent 95% confidence intervals.
Figure 4.
Cohort life expectancy at age 50 by sex and status within the Church of Jesus Christ of Latter-day Saints for Utah (a), Sweden and Denmark (c) and the sex differences in each group (c).